期刊文献+

神经网络与D-S证据理论分层融合的柴油机综合故障诊断方法研究 被引量:6

Diesel Engine Synthesized Fault Diagnosis Technique Based on Hierarchically Fusing Neural Network and D-S Evidence Theory
下载PDF
导出
摘要 针对柴油机传统故障诊断方法处理数据量大、故障类型复杂多变的问题时存在诊断准确率不高的现状,利用数据融合原理,将神经网络和证据理论进行有机的结合,提出了神经网络和证据理论分层融合的柴油机故障综合诊断方法.该方法通过并行神经网络的结构提高局部诊断网络的诊断能力,并给出了基本可信度分配的客观化方法,充分利用各种故障的冗余和互补信息,可显著提高故障诊断的准确率.诊断实例表明,该方法能显著提高柴油机故障诊断系统的效率. For the reasons of low diagnosis accuracy of traditional diesel engine fault diagnosis methods in handling diagnostic problems such as lots of data and various complex faults,a diesel engine synthesized fault diagnosis technique fusing neural network and evidence theory is presented by means of data fusion theory.In this technique,the diagnosis ability of the local diagnosis networks is advanced through parallel neural network structure,and an impersonal means obtaining basic reliability distribution of evidence theory is given,and then the accuracy of the fault diagnosis is improved obviously by taking full advantages of various redundant and complementary fault information.Finally an example is applied for fault diagnosis of ship diesel engine,and diagnostic results indicate that the technique is available,which can improve the efficiency of diesel engine fault diagnosis system evidently.
作者 杨广 吴晓平
出处 《武汉理工大学学报(交通科学与工程版)》 2011年第3期558-561,566,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家863计划项目(批准号:2007AA12Z208) 国家自然科学基金项目(批准号:70471031 60774029)资助
关键词 柴油机 故障诊断 信息融合 神经网络 D-S证据理论 diesel engine fault diagnosis information fusion neural network D-S evidence theory
  • 相关文献

参考文献7

二级参考文献12

  • 1李宏,徐晖,安玮,孙仲康.基于人工神经网络与证据理论相结合的信息融合空间点目标识别方法研究[J].信息与控制,1997,26(2):137-155. 被引量:8
  • 2夏安帮.决策支持系统导论[M].上海:同济大学出版社,1993..
  • 3夏安帮,决策支持系统导论,1993年
  • 4Zhou Ruixiang, Lin Tingqi, Ban Jianding,et al. Fault Diagnosis of Airplane Hydraulic Pump. Proceeding of the 4th World Congress on Intelligent Control and Automation, Beijing, 2002
  • 5Rogova G. Combining the Results of Several Neural Network Classifier. Neural Networks, 1994, 7(5): 777-781
  • 6Marrero J A. Understand ground fault detection and isolation in DC systems[A]. IEEE Power Engineering Society Summer Meeting[C]. Seattle, WA, USA, 2000, 3: 1707-1711.
  • 7Yang Z, Sagara S, Tsyji T. System impulse response identification using a multiresolution neural network[J]. Automatica, 1997, 33(7):1345-1350.
  • 8Ingrad Daubechies. Ten lectures on wavelets[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992.
  • 9Martin T H, Howard B D. Neural network design[M]. Beijing: China Machine Press, 2002.
  • 10麻健,李勇忠,权龙,陆世鑫.基于神经网络的液压柱塞泵松靴故障诊断[J].太原理工大学学报,1998,29(6):607-609. 被引量:1

共引文献48

同被引文献48

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部