期刊文献+

低频振动对BMSCs成骨能力影响及机制的在体实验研究 被引量:1

Influence of low frequency vibration on osteogenesis of bone marrow stromal cells and its mechanism in vivo experiment
原文传递
导出
摘要 [目的]通过在体实验,研究低频振动对骨髓基质干细胞(bone marrow stromal cells,BMSCs)成骨能力及其OPG基因、RANKL基因表达的影响,并初步探讨其机制。[方法]实验用新西兰兔80只,制作骨缺损模型,骨缺损区植入脱钙骨基质明胶及BMSCs复合物,随机分组:对照组(A组);12.5 Hz振动频率组(B组);25 Hz振动频率组(C组);50 Hz振动频率组(D组);100 Hz振动频率组(E组)。振动组于第7 d开始接受振动干预5周;振动结束后对不同频率振动组别OPG mRNA、RANKL mRNA进行检测。[结果]振动组BMSCs OPG、RANKL基因表达明显上调(P<0.05),以25 Hz显著(P<0.01);100 Hz振动组BMSCs OPG、RANKL基因表达下调(P<0.05)。[结论]低频振动可调控BMSCs的骨向分化并且促进其成骨能力,可能与其促进OPG基因表达上调有关。 [ Objectivel To explore the effect of low frequency vibration on osteogenesis of bone marrow stromal cells (BMSCs) and OPG mRNA, RANKL mRNA expression through the vivo experiment. [ Methods] Eighty experimental rabbits were randomly divided into control group (A group), 12. 5Hz vibration frequency group (B group), 25Hz vibration frequency group ( C group), 50Hz vibration frequency group ( D group) and lOOHz vibration frequency group ( E group) . At 7 days, vibration groups B, C, D and E received low frequency vibration for 5 weeks. After vibration , OPG mRNA, RANKL mRNA were detected. [ Results ] In the vibration groups OPG and RANKL gene expressions were significantly increased ( P 〈 0. 05 ), particularly in 25Hz group (P 〈 0.01 ), but decreased in lOOHz group ( P 〈 0. 05 ) . [ Conclusion] Low frequency vibration can control the differentiation of BMSCs and promote their osteogenic capability, which is attributed to the elevated OPG gene expression.
出处 《中国矫形外科杂志》 CAS CSCD 北大核心 2011年第13期1122-1125,共4页 Orthopedic Journal of China
基金 国家自然科学基金资助项目(30970708)
关键词 低频振动 BMSCS OPG RANKL 在体实验 low - frequency vibration, BMSCs, OPG, RANKL, In vivo experiment
  • 相关文献

参考文献8

二级参考文献56

共引文献21

同被引文献21

  • 1Frost HM. Bone "mass" and the "mechanostat": a proposal[J]. Anat Rec, 1987, 219(1): 1-9.
  • 2Pioletti DP. Biomechanics and tissue engineering[J]. Osteoporos Int, 2011,22(6): 2027-2031.
  • 3Lichte P, Pape HC, Pufe T, et al. Scaffolds for bone healing: concepts, materials and evidence[J]. Injury, 2011, 42(6): 569-573.
  • 4van der Meulen MC, Yang Xu, Morgan TG, et al. The effects of loading on cancellous bone in the rabbit[J]. Clin Orthop Relat Res, 2009, 467(8): 2000-2006.
  • 5Duty AO, Oest ME, Guldberg RE. Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo[J]. J Biomech Eng, 2007, 129(4): 531-539.
  • 6Schwarz C, Wulsten D, Ellinghaus A, et al. Mechanical load modulates the stimulatory effect of BMP2 in a rat nonunion model[J]. Tissue Eng Part A, 2013, 19(1-2): 247-254.
  • 7Boerckel JD, Uhrig BA, Willett NJ, et al. Mechanical regulation of vascular growth and tissue regeneration in vivo[J]. Proc Natl Acad Sci USA, 2011, 108(37): E674-680.
  • 8Boerckel JD, Kolambkar YM, Stevens HY, et al. Effects of in vivo mechanical loading on large bone defect regeneration[J]. J Orthop Res, 2012, 30(7): 1067-1075.
  • 9Roshan-Ghias A, Lambers FM, Gholam-Rezaee M, et al. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates[J]. Bone, 2011, 49(6): 1357-1364.
  • 10Roshan-Ghias A, Terrier A, Bourban PE, et al. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold[J]. Eur Cell Mater, 2010, 19: 41-49.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部