期刊文献+

镁离子掺杂锂离子电池硅酸锰锂正极材料 被引量:3

Effect of Mg^(2+) Doping on Structure and Electrochemical Performance of Lithium Magnesium Silicate
原文传递
导出
摘要 以MgAC2为掺杂剂,葡萄糖碳化为碳包覆源,通过溶胶凝胶法制备了含有镁离子的硅酸锰锂正极材料前驱体,在惰性气保护下经高温焙烧得到碳包覆的硅酸锰锂正极材料。对镁离子掺杂对硅酸锰锂物理和电化学性能的影响进行了探讨。交流阻抗和循环伏安测试表明,碳包覆和低含量镁离子掺杂不会破坏硅酸锰锂的材料,并且显著提高了电子传导过程的电导率,同时硅酸锰锂正极材料的循环性能得到提高。0.1C倍率放电测试显示,镁离子掺杂和非掺杂的硅酸锰锂的不可逆比容量分别有289 mA.h/g和248 mA.h/g。经过20次循环,其容量分别保持在155 mA.h/g和122 mA.h/g。与未掺杂的硅酸锰锂相比,镁离子掺杂后,硅酸锰锂的循环稳定性得到极大的提高。 Stoichiometric Mg-doped Li2MnSiO4 cathode material was synthesized by a sol-gels process with magnesium acetate de-hydrate as a dopant and sucrose as carbon-coating materials and subsequent high temperature treatment in an inert atmosphere.The effect of Mg2+ doping on the physical and electrochemical properties of the as-prepared cathode materials was investigated.AC im-pedance spectra and cycle voltammagram results showed that the carbon coating and low concentration Mg2+ doping do not destroy the structure of Li2MnSiO4,but enhance the electron conductivity during the electron translation procedure.Moreover,the cycle per-formance was improved.At a discharging rate of 0.1C,the reversible specific capacities of the Mg-doped lithium magnesium silicate and the un-doped Li2MnSiO4 were 289 and 248 mA·h/g,respectively.After 20 cycles,the capacities were 155 and 122 mA·h/g,re-spectively.By Mg ions doping,Li2MnSiO4 exhibited a more stable cycle performance than that of Li2MnSiO4/C cathode material.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2011年第7期1084-1089,共6页 Journal of The Chinese Ceramic Society
基金 supported by Shanghai Postdoctoral Science Foundation(10R21412900) China Postdoctoral Science Foundation(20100470677) Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50102)
关键词 硅酸锰锂 镁离子掺杂 锂离子电池 碳包覆 溶胶凝胶法 lithium magnesium silicate Mg-doped lithium battery carbon-coated sol-gel
  • 相关文献

参考文献17

  • 1ARROYO-DE DOMPABLO M E,,ARMAND M,TARASCON J M,et al.On-demand design of polyoxianionic cathode materials based on electro negativity correlations:An exploration of the Li2MSiO4 system(M=Fe,Mn,Co,Ni). Electrochemistry Communications . 2006
  • 2PADHI A K,NANJUNDASWAMY K S,GOODENOUGH J B.Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates. Journal of the Electrochemical Society . 1997
  • 3NYTéN A,ABOUIMRANE A,ARMAND M,et al.Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochemistry Communications . 2005
  • 4ZHONG G H,LI Y L,YAN P,et al.Structural,electronic and electro-chemical properties of cathode materials Li2MSiO4(M=Mn,Fe,and Co):density functional calculations. J Phys Chem C . 2010
  • 5YANG Y,LI Y,GONG Z.Synthesis and characterization of high ca-pacity Silicate/C cathode materials for lithium ion batteries. Inter-national Meeting on Lithium Batteries . 2006
  • 6DOMINKO R,BELE M,GABERSCEK M,et al.Structure and electro-chemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications . 2006
  • 7NULI Y N,YANG J,LI Y,et al.Molten salt synthesis of MgMnSiO4 for rechargeable magnesium battery cathode. ECS Meeting Ab-stracts . 2008
  • 8SHIN-ICHI N,SHOGO H,RYOJI K,et al.Structure of Li2FeSiO4. Journal of the American Chemical Society . 2008
  • 9Armstrong A R,Lyness C,Menetrier M,et al.Struc-tural polymorphism in Li2CoSiO4 intercalation elec-trodes:A combined diffraction and NMR study. Chemistry of Materials . 2010
  • 10Nytén A,Kamali S,Haggstrom Let al.The lithiumextraction/insertion mechanism in Li2FeSiO4. Journal ofMaterials Chemistry . 2006

同被引文献59

  • 1刘景,温兆银,顾中华.LiCoO_2正极材料的溶胶-凝胶法合成及其电化学性能研究[J].硅酸盐学报,2002,30(z1):4-7. 被引量:2
  • 2叶乃清,刘长久,沈上越.锂离子电池正极材料LiNiO_2存在的问题与解决办法[J].无机材料学报,2004,19(6):1217-1224. 被引量:39
  • 3于永丽,翟秀静,储刚,王乃芝.微波合成LiCoO_2及其反应机理[J].硅酸盐学报,2005,33(3):362-365. 被引量:4
  • 4李新禄,康飞宇,郑永平,施秀娟,沈万慈.锂离子电池正极材料LiNi_(0.7)Co_(0.25)Al_(0.05)O_2的结构表征和电化学特性[J].硅酸盐学报,2005,33(10):1193-1196. 被引量:2
  • 5K Mizushima,P C Jones,P J Wiseman,et al. Li-CoOz (0%x --I):A new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980,15 (6) : 783- 789.
  • 6A M Kannan, L Rabenberg, et al. High capacity surface- modified LiCoO2 cathodes for lithium-ion batteries[J]. Elec- trochemistry and Solid-State Letters, 2003, 6 (1): A16- A18.
  • 7A K Padhi, K S Nanjundaswamy, J B Goodenough. Phos- pho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of Electrochemical Society, 1997,144(4):1 188-1 194.
  • 8P P Prosini, M Lisi, D Zane, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Sol- id State Ionics, 2002,148 (1-2) : 45-51.
  • 9M E Dompablo, M Armand,J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electro- negativity correlations - an exploration of the Li2MSiO4 sys- tem (M= Fe, Mn, Co, Ni) [J]. Electrochemistry Communi- cation, 2006,8(8) : 1 292-1 298.
  • 10R Dominko, M Bele, M Gaberscek, et al. Structure and elec- trochemical performance of LieMnSiO4 and LieFeSiO4 as potential Li-battery cathode materials[J]. Electrochemistry Communication, 2006,8 (2) : 217-222.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部