期刊文献+

前驱体固相法制备硅酸铁锂正极材料 被引量:7

Synthesis of Lithium Iron Siliate Electrode Materials via Precursor Solid-State Reaction
原文传递
导出
摘要 以碳酸锂或乙酸锂、草酸亚铁和正硅酸乙酯为原料,蔗糖为碳源,乙酸为催化剂,通过溶胶·凝胶法制备前驱体,再采用固相反应法在600℃、氮气气氛中一步烧结制备了碳包覆硅酸铁锂(Li2FeSiO4/C)正极材料。将其组装成电池进行电化学性能测试。用X射线衍射和扫描电镜表征Li2FeSiO4/C的结构、形貌和晶粒尺寸。结果表明:以乙酸锂为锂源制备的Li2FeSiO4/C结晶良好,基本无杂相,晶粒尺寸为50~200 nm,分布较均匀;在C/16、C/10、1C和2C(1C=166 mA/g)放电速率下,放电比容量分别达153、138、131 mA·h/g和93 mA.h/g,经过30个充放电循环后,容量几乎没有衰减。 The carbon-coated Li2FeSiO4 cathode materials were prepared via a solid-state reaction by one-step calcination of precursors,which were synthesized in a sol-gels process with Li2CO3 or CH3COOLi·2H2O,FeC2O4·2H2O and Si(C2H5O)4 as reaction reagents,sucrose as a carbon source and HAc as a catalyst,under N2 atmosphere at 600 ℃.The electrochemical performance was examined by assembling a battery with the Li2FeSiO4/C samples.The X-ray diffraction and scanning electron microscopy were used to characterize the structure,morphology and grain size of the as-prepared sample.The results indicate that the Li2FeSiO4/C samples prepared by CH3COOLi·2H2O as a lithium source exhibits a good crystallinity with little impurities.The sizes of Li2FeSiO4/C particles were approximately 50-200 nm.The discharge capacities of 153,138,131 and 93 mA·h/g could be obtained at C/16,C/10,1C and 2C rate,respectively.No apparent capacity loss was observed after 30 cycles.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2011年第7期1097-1101,共5页 Journal of The Chinese Ceramic Society
基金 福建省特种先进材料重点实验室(2006L2003)资助项目
关键词 锂离子电池 正极材料 硅酸铁锂 前驱体固相法 lithium ion battery cathode material lithium iron silicate precursor solid-state reaction
  • 相关文献

参考文献17

  • 1NYT N A,,ABOUIMRANE A,ARMAND M,et al.Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochemistry Communications . 2005
  • 2DOMINKO R,BELE M,GABERSCEK M,et al.Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications . 2006
  • 3GONG Z L,LI Y X,YANG Y.Synthesis and characterization of Li2MnxFe1–xSiO4 as a cathode material for lithium-ion batteries. Electrochemical and Solid State Letters . 2006
  • 4HUANG X,LI X,WANG H,et al.Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries. Solid State Ionics . 2010
  • 5DOMINKO R.Li2MSiO4 (M=Fe and/or Mn)cathode materials. Journal of Power Sources . 2008
  • 6DENG C,ZHANG S,FU B L,et al.Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol–gel method. Materials Chemistry and Physics . 2010
  • 7Nishimura SI,Hayase S,Kanno Ret al.Structure ofLi2FeSiO4. Journal of the American Chemical Society . 2008
  • 8L.-m. Li,H.-j. Guo,X.-h. Li,Z.-x. Wang,W.-j. Peng,K.-x. Xiang,X. Cao.Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. Journal of Power Sources . 2009
  • 9Muraliganth T,Stroukoff K R,Manthiram A.Micro-wave-solvothermal synthesis of nanostructuredLi2MSiO4/C (M=Mn and Fe)cathodes for lithium-ion batteries. Chemistry of Materials . 2010
  • 10G.X.Wang,H.Liu,J.Liu,S.Z.Qiao,G.Q.M.Lu,P.Munroe,H.Ahn.4</sub>/C nano-composite cathode materials for high power lithium ion batteries with superior performance&amp;sid=Advanced Materials&amp;aufirst=G.X.Wang');&#xA; ">Mesoporous LiFePO<sub>4</sub>/C nano-composite cathode materials for high power lithium ion batteries with superior performance. Advanced Materials . 2010

同被引文献66

  • 1常晓燕,王志兴,李新海,匡琼,彭文杰,郭华军,张云河.锂离子电池正极材料LiMnPO_4的合成与性能[J].物理化学学报,2004,20(10):1249-1252. 被引量:15
  • 2唐新村,金乐,刘畅.基于容量参数的二次电池嵌入型电极材料固相扩散系数的测定方法[J].中国有色金属学报,2005,15(9):1431-1435. 被引量:2
  • 3唐新村,黄伯云,贺跃辉.LiMn_2O_4中锂离子扩散系数与充/放电次数的关系[J].物理化学学报,2005,21(9):957-960. 被引量:3
  • 4金乐,唐新村,潘春跃,蒋呈奎.LiCoO_2中锂离子固相扩散系数随循环次数的变化[J].无机化学学报,2007,23(7):1238-1241. 被引量:8
  • 5PADHI A K, ANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144(4): 1188-1194.
  • 6LI X L, WANG W D, Shi C W, et al. Structural and electrochemical characterization of LiFePO4/C prepared by a sol-gel route with long-and short-chain carbon sources [J]. J Solid State Electrochem, 2009, 13(6): 921-926.
  • 7PROSINI P P, CAREWSKA M, SCACCIA S, et al. Long-term cyclability of nanostructured LiFePO4[J]. Electrochim Acta, 2003, 48(28): 4205-4211.
  • 8MORRIS R E. Ionothermal synthesisionic liquids as functional solvents in the preparation of crystalline materials [J]. Chem Commun, 2009, 45(21): 2990-2998.
  • 9RECHAM N, DUPONT L, COURTY M, et al. Ionothermal synthesis of tailor-made LiFePO4 powders for li-ion battery applications [J]. Chem Mater, 2009, 21(6): 1096-1107.
  • 10BARPANDA P, DJELLAB K, RECHAM N, et al. Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries [J]. J Mater Chem, 2011, 21(27): 10143-10152.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部