期刊文献+

用遗传算法优化模块密度探测社团结构 被引量:1

Genetic algorithm optimizing modularity density for community detection
下载PDF
导出
摘要 为更精确地探测社团结构,通过选择优化函数,分析社团结构特性,设计适合社团检测的选择、交叉、变异等遗传算子,提出了基于遗传算法和模块密度的社团结构探测算法。该算法未采用传统的分裂或聚合方法用减边或加边的策略,没有引入其他中间变量,直接通过优化模块密度函数发现网络社团结构。分析和仿真结果表明,该算法探测的社团结构与模块度探测算法相比,能检测到更小规模的社团结构,参照强弱社团结构定义,比较各节点的内部度,其不满足强社团定义的节点明显小于其他划分结果,在性能上有了显著提高,能更准确地测度社团结构。 Identification and detection of the community structure is fundamental and important problem for the analysis of complex network. To detect community structure precisely,a new community detection algorithm was designed based on genetic algorithm and modularity density D. The algorithm does not need any prior knowledge about the number of communities, requires no arbitrary convergence or abruption criteria, and can generally find the global optimal solution. Genetic algorithm for detecting communities in complex networks, based on optimizing network modularity density was presented here. The algorithm was illustrated and compared with GN algorithm by using classic real world networks. Optimizing modularity density D not only can resolve detail modules but also can correctly identify the number of communities. Experimental results show the method can reveal community structure more precisely than traditional approaches. According to the definition of community in a strong sense, the nodes in experimental result which have more connections within the community than with the rest of the graph are more than the other partitions.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2011年第3期233-238,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60975074) 山西省自然科学基金资助项目(2009011017-1)
关键词 遗传算法 模块密度 社团结构 复杂网络 genetic algorithm complex networks modularity density community structure
  • 相关文献

参考文献15

  • 1ALBERT R, BARABfitSI A L. Statistical mechanics of complex networks [J]. Reviews of Modern Physics, 2002,74(1) : 47-48.
  • 2Albert-latszlo Barabasi, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999 (286) : 509-512.
  • 3MA Xiao-ke, GAO Lin, YONG Xue-rong, et al. Semi-supervised clustering algorithm for community structure detection in complex networks[J]. Physica A,2010(389) : 187-197.
  • 4刘晋霞,曾建潮,薛耀文.复杂网络强社团结构探测[J].小型微型计算机系统,2011,32(4):686-690. 被引量:6
  • 5LIU Jin-xia, ZENG Jian-chao, XUE Yao-wen. Quantitative function for community detection[C]. The International Conference on Electrical Engineering and Automatic Control ICEEAC 2010. Zibo: Shandong inati- tute of automation,2010.
  • 6FORTUNATO S, BARTHELEMY M. Resolution limit in community detection [J]. PNAS, 2007 (104) : 36-41.
  • 7GIRVAN M, NEWMAN M E J,Community structure in social and biological networks [J]. PNAS, 2002 (99) :7821-7826.
  • 8LI Zhen-ping, ZHANG Shi-hua, WANG Rui-sheng, et al. Quantitative function for community detection[J]. Phy Rev E,2008,77(3) :109-117.
  • 9戴飞飞,唐普英.基于DNA遗传算法的复杂网络社区结构发现[J].计算机工程与应用,2008,44(3):53-56. 被引量:7
  • 10赵凤霞,谢福鼎,稽敏.基于复杂网络理论和遗传算法的分类方法[J].计算机应用与软件,2010,27(2):44-46. 被引量:1

二级参考文献44

  • 1刘婷,胡宝清.基于聚类分析的复杂网络中的社团探测[J].复杂系统与复杂性科学,2007,4(1):28-35. 被引量:16
  • 2Girvan M,Newman M E J.Community structure in social and biological networks[C]//Proceedings of National Academy of Science,2002,99:7821-7826.
  • 3Clauset A,Newman M E J,Moore C.Finding community structure in very large networks[J].Physical Review E,2004,70.
  • 4Newman M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69.
  • 5Holland J H.Adaptation in Natural and Artificial Systems[M].USA:The University of Michigan Press,1975.
  • 6Zachary W W.An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research,1977,33:452-473.
  • 7Girvan M,Newman M E J.Community structure in social and biological networks[J].Proceedings of National Academy of Science,2002,99:7821-7826.
  • 8Tasgin M.Community detection model using genetic algorithm in complex networks and its application in real-life networks[D].Istatbul:Bogazici University,2005.
  • 9NEWMAN M E J.Fast algorithm for detecting community structure in networks[J].Phys Rev E,2004,69(6):066133.
  • 10GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci,2001,99:7821-7826.

共引文献14

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部