摘要
The separation of Sm(III) through stripping dispersion hollow fiber liquid membrane system (SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HC1 solution as the stripping solution and membrane solution of di(2-ethylhexyl) phosphoric acid (p204) dissolved in kerosene, has been studied. A set of factors were studied, including pH value, initial concentration of Sm(III) and different ionic strength of feed phase, volume ratio of membrane solution and stripping solution (O/W), HC1 concentration, carrier concentration, different stripping agents of dispersion phase on Sm(III) separation. Experimental results indicate that the optimum separa- tion conditions of Sm(III) were obtained as that HC1 concentration was 4.00 tool/L, p204 concentration was 0.150 mol/L, and volume ratio of membrane solution and stripping solution (O/W) was 1.00 in the dispersion phase, and pH value was 4.60 in the feed phase. Ionic strength had no obvious effect on separation of Sm(III). When initial Sm(III) concentration was 1.00 × 10^-4 mol/L, the separation rate of Sm(III) was up to 93.5% in 85 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The modeled results were in good agreement with the experiment data.
The separation of Sm(III) through stripping dispersion hollow fiber liquid membrane system (SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HC1 solution as the stripping solution and membrane solution of di(2-ethylhexyl) phosphoric acid (p204) dissolved in kerosene, has been studied. A set of factors were studied, including pH value, initial concentration of Sm(III) and different ionic strength of feed phase, volume ratio of membrane solution and stripping solution (O/W), HC1 concentration, carrier concentration, different stripping agents of dispersion phase on Sm(III) separation. Experimental results indicate that the optimum separa- tion conditions of Sm(III) were obtained as that HC1 concentration was 4.00 tool/L, p204 concentration was 0.150 mol/L, and volume ratio of membrane solution and stripping solution (O/W) was 1.00 in the dispersion phase, and pH value was 4.60 in the feed phase. Ionic strength had no obvious effect on separation of Sm(III). When initial Sm(III) concentration was 1.00 × 10^-4 mol/L, the separation rate of Sm(III) was up to 93.5% in 85 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The modeled results were in good agreement with the experiment data.
基金
Project supported by the National Natural Science Foundation of China (or Young Scientists (Nos. 41001131 and 51009126), the Action Plan for the Development of Western China of the Chinese Academy of Sciences (No. KZCX2-XB2-13), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-YW-N-003) and Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (Nos. 602-210805 and 602-210804).