期刊文献+

Drinfeld-Sokolov-Satsuma-Hirota方程族及其广义双Hamiltonian结构

Drinfeld-Sokolov-Satsuma-Hirota Equations and Generalized Bi-Hamiltonian Structures
下载PDF
导出
摘要 基于带有两个位势的4×4矩阵谱问题,导出一族非线性演化方程,其中一个典型成员是Drinfeld-Sokolov-Sa-tsuma-H irota方程.进而证明了这族方程具有广义双Ham iltonian结构并且在Liuovlle意义下是完全可积的. A hierarchy of nonlinear evolution equations was derived from a matrix spectral problem with two potentials, in which a typical member was the Drinfeld-Sokolov-Satsuma-Hirota equation . It wasshown that the hierarchy of nonlinear evolution equations possessed the generalized bi-Hamihonian structures and was completely integrable in the Liuovlle sense.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第3期31-33,37,共4页 Journal of Zhengzhou University:Natural Science Edition
关键词 Drinfeld-Sokolov-Satsuma-Hirota方程族 广义双Hamiltonian结构 可积性 Drinfeld-Sokolov-Satsuma-Hirota equations generalized bi-Hamihonian structures integrability
  • 相关文献

参考文献7

  • 1Drinfeld V G, Sokolov V V. Equations of Korteweg-de Vries type and simple Lie algebras [J]. Dokl Akad Nauk SSSR, 1981, 258(1) :11 -16.
  • 2Satsuma J, Hirota R. A coupled KdV equation is one of the four-reduction of the KP hierarchy [ J ]. J Phys Soc Japan, 1982, 51 (10) :3390 - 3397.
  • 3Karsau A, Sarkovich S Y. Biicklund transformation and special solutions for Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations[J]. J Phys A:Math Gen, 2001, 34(36):7353-7358.
  • 4Wazwaz A M. The Cole-Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota equation[ J]. Appl Math Comput, 2009,207 ( 1 ) :248 - 255.
  • 5李雪梅,杨运平.高阶耦合非线性Schrdinger方程的单孤子解[J].郑州大学学报(理学版),2002,34(3):13-15. 被引量:2
  • 6杜殿楼.驻定CG方程解的参数表示[J].郑州大学学报(自然科学版),1998,30(1):12-17. 被引量:2
  • 7Tu G Z. A trace identity and its applications to the theory of discrete integrable systems[J]. J Phys A:Math Gen,1990,23 (17) : 3903 - 3922.

二级参考文献12

  • 1Flaschka H. Relations between Infinite-dimensional and Finite-dimensional Isospectral Equations. in Proc RIMS Sym. On a Nonlinear Integrable Systems, Kyoto Japan, World Sci Pr Singapore. 1983.219-239.
  • 2Ablowitz M J, Segur H. Solitons and the Inverse Scatting Transform. SIAM Studies in Appl Math, Philadelphia, 1981.
  • 3扎哈罗夫V E,诺维科夫S P,马纳科夫S V等著,彭启才译.孤立子理论.北京:科学出版社,1985.
  • 4Al'ber S I. Investigation of Equations of KdV Type by the Method of Recurrence Relations. J London Math Soc (in Russian), 1979, 467-480.
  • 5Tu Guizhang. On Complete Integrability of a Large CLass of Finite-dimensional Hamiltonian Systems. Advances in Math (in China), 1991,20:60-74.
  • 6Cao Cewen. Nonlinearization of the Lax System for the AKNS Hierarchy, Science in China, 1990, A 33(5) :528-536.
  • 7Cao Cewen, Ceng Xianguo. Classical Integrable System Generated through Nonlinearization of Eigenvalue Problem. ,Springer-Verlag, Berlin, Heidelberg, 1990,68-78.
  • 8Al'her S I. On Stationary Problem for Equations of KdV Type. Comm Pur Appl Math, 1981,34-259.
  • 9Cao Cewen , Parametric Representation of the Finite-band Solution of the Heisenberg Equation. Phys Let,1994 A: 333-338.
  • 10Cao Cewen, Geng Xianguo. A Nonconfocal Generator of Involutive Systems and Three Associated Soliton Hierarchy, J Math Phys, 1991,32:2323-2328

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部