摘要
利用Gains和Mawhin重合度理论中的延拓定理,得到了一类具有Beddington-DeAngelis功能反应密度制约的离散非自治捕食者—食饵系统周期解存在性的充分条件,推广了某些已知的相关结果.这个结论不仅适用于离散时滞,同样也适用于分布时滞和偏差变元.
By using the continution theorem based on Gaines and Mawhin' s coincidence degree, sufficient and realistic conditions were obtained for the existence of positive periodic solutions for a discrete time nonautonomous density dependence predatorprey system with Beddington-DeAngelis functional response, and the results were improved. The results were applicable to distribute delays and deviating arguments.
出处
《郑州大学学报(理学版)》
CAS
北大核心
2011年第3期38-42,共5页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金资助项目,编号60774041
关键词
捕食者密度制约
B-D功能反应函数
周期解
重合度理论
延拓定理
density dependent predator
Beddington-DeAngelis functional response
periodic solution
coincidence degree
continution theorem