期刊文献+

B-D功能反应密度制约的离散非自治捕食者—食饵系统的周期解 被引量:1

Periodic Solution of Discrete Time Nonautonomous Density Dependent Predator-Prey System with B-D Functional Response
下载PDF
导出
摘要 利用Gains和Mawhin重合度理论中的延拓定理,得到了一类具有Beddington-DeAngelis功能反应密度制约的离散非自治捕食者—食饵系统周期解存在性的充分条件,推广了某些已知的相关结果.这个结论不仅适用于离散时滞,同样也适用于分布时滞和偏差变元. By using the continution theorem based on Gaines and Mawhin' s coincidence degree, sufficient and realistic conditions were obtained for the existence of positive periodic solutions for a discrete time nonautonomous density dependence predatorprey system with Beddington-DeAngelis functional response, and the results were improved. The results were applicable to distribute delays and deviating arguments.
作者 李海银
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第3期38-42,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目,编号60774041
关键词 捕食者密度制约 B-D功能反应函数 周期解 重合度理论 延拓定理 density dependent predator Beddington-DeAngelis functional response periodic solution coincidence degree continution theorem
  • 相关文献

参考文献13

  • 1Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency [ J ]. J Animal Ecol, 1975,44(1) :331 - 340.
  • 2DeAngelis D L, Goldstein R A, O'Neil R V. A model for trophic interaction [ J ]. Ecology, 1975,56 (4) :881 -892.
  • 3Cui Jing' an, Takeuchi Y. Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response [ J ]. J Math Anal App1,2006,317 ( 2 ) :464 - 474.
  • 4Fan Meng, Kuang Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response [ J ]. J Math Anal Appl,2004,295 ( 1 ) : 15 - 39.
  • 5Liu Shengqiang, Beretta E. A stage-structured predator-prey model of Beddington-DeAngelis type [ J ]. SIAM J Appl Math, 2006,66(4) :1101 - 1129.
  • 6Hwang T W. Global analysis of the predator-prey system with Beddington -DeAngelis functional response[ J]. J Math Anal Appl, 2003,281 (1) :395 -401.
  • 7Cantrell R S, Cosner C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response [ J ]. J Math Anal Appl, 2001,257( 1 ) :206 -222.
  • 8May R M. Stability and Complexity in Model Ecosystems[ M ]. Princeton:Princeton Univ Press, 1974.
  • 9Freedman H I. Deterministic mathematical models in population ecology[ M]. New York: Marcel Dekker, 1980.
  • 10Li Haiyin, Takeuchi Y. Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response [J]. J Math Anal Appl, 2011,374(2) :644 -654.

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部