期刊文献+

基于联合卡尔曼滤波的汽车防碰撞多传感器信息融合方法 被引量:5

Multi-sensor Information Fusion Algorithm in Automotive Anti-collision System Based on Federated Kalman Filter
下载PDF
导出
摘要 车辆行驶信息感知是汽车防碰撞系统的关键技术之一,只用单一传感器对目标车辆进行测量容易产生虚警.在对联合卡尔曼滤波分析的基础上,给出了基于联合卡尔曼滤波的汽车防碰撞多传感器信息融合方法.计算机仿真结果表明,该算法可以得到较精确的融合数据,对于增强汽车防碰撞系统的安全性具有重要意义. The perception of vehicle running information was one of the key technologies in automotive anti-collision system. And it was easy to cause false alter when using the single sensor measured the aim vehicle. The multi-sensor information fusion algorithm based on federated Kahnan filter was introduced and applied to solve the muhi-sensor information fusion problem in automotive anti-collision system. The simulation results showed that the federated Kalman filter can receive accurate fusion data and enhance the safety of automotive anti-collision system.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第3期99-102,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省创新人才杰出青年计划项目 编号084100410009
关键词 联合卡尔曼滤波 汽车防碰撞 信息融合 federated Kalman filter automotive anti-collision information fusion
  • 相关文献

参考文献5

二级参考文献21

  • 1张崇猛,陈超英,庄良杰,刘飞.信息融合理论及其在INS/GPS/Doppler组合导航系统中的应用[J].中国惯性技术学报,1999,7(3):2-9. 被引量:18
  • 2李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 3日[社团法人]交通工程协会.智能交通系统.北京:人民交通出版社,2000.31-39
  • 4GORDON N J, SALMOND D J, SMITH A F M. A Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings on Radar and Signal Processing (S0956-375X), 1993, 140(2): 107-113.
  • 5C Musso, N Oudjane, F LeGland. Improving regularised particle filters [M]// Sequential Monte Carlo Methods in Practice, A Doucet, J F G de Frcitas, N J Gordon, Eds. New York, USA: Springcr-Vcrlag, 2001.
  • 6N Oudjane, C Musso. Progressive correction for regularized panicle filter [C]// FUSION 2000. Proceedings of the Third International Conference on, 10-13 July 2000:THB2/10-THB2/17 vol. 2.
  • 7Miodrag Bolic, Petar Miodrag Bolic Petar. New resamping algorithms for particle filters [C]// Acoustics, Speec, and Signal Processing, 2003 Proceedings (ICASSP-03), 2003 IEEE International Conference, 6-10 April 2003. USA: IEEE, 2003: 589-592.
  • 8Thomas Schon, Fredrik Gustafsson, Per-John Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-space Models [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING (S1053-587X), 2005, 53(7): 2279-2289.
  • 9Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering [J]. Statistics and Computing (S0960-3174), 2000, 10(3): 197-208.
  • 10Audrey Giremus, Jean-Yves Tourneret, Petar M Djuric. An improved regularized particle filters for gps/ins integration [C]// IEEE 6^th Workshop on Signal Processing Advances in Wireless Communications, 2005. USA: IEEE, 2005: 1013-1017.

共引文献49

同被引文献49

  • 1Guanlin Zhai,Yan Yang,Heng Wang,Shengdong Du.Multi-Attention Fusion Modeling for Sentiment Analysis of Educational Big Data[J].Big Data Mining and Analytics,2020,3(4):311-319. 被引量:5
  • 2胡海峰,史忠科,徐德文.智能汽车发展研究[J].计算机应用研究,2004,21(6):20-23. 被引量:38
  • 3廖瑞金,廖玉祥,杨丽君,王有元.多神经网络与证据理论融合的变压器故障综合诊断方法研究[J].中国电机工程学报,2006,26(3):119-124. 被引量:99
  • 4Wang Li-jun, Zhao Hui-chang, Yang Xiao-niu. The modeling and simulation for GPS/INS integrated navigation system[C]// International Conference on Microwave and Millimeter Wave Technology. 2008:1991-1994.
  • 5GAO Y, Krakiwsky E J, Abousalem M A. Comparison and analysis of centralized, decentralized, and federated filters[J]. Navigation, 1993, 40(1): 69-86.
  • 6Lawrence P J, Berarducci M E Comparison of federated and centralized Kalman filters with fault detection on considerations[C]//Position, Location and Navigation symposium. 1994: 703-710.
  • 7Yang yong, Miao Ling-juan. Adaptive federal Kalman filtering for SINS/GPS integrated system[J]. Journal of Beiiing, Institute of Technoloev. 2003. 12(4): 371-375.
  • 8Zhang Hong-wei, Lennox B, Goulding P R, et al. Adaptive information sharing factors in federated Kalman filtering [C]//15^th Triennial World Congress, Barcelona, Spain, 2002.
  • 9Carlson N A. Federated filter for fault-tolerant integrated navigation systems[C]//IEEE Position Location and Navigation Symposium. 1988:110-119.
  • 10高德芝,段建民,郑榜贵,田炳香.智能车辆环境感知传感器的应用现状[J].现代电子技术,2008,31(19):151-156. 被引量:9

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部