期刊文献+

第二个大根不超过2^(1/2)的树 被引量:3

On Trees Whose Second Largest Eigenvalue Does Not Exceed 2^(1/2)
下载PDF
导出
摘要 1982 年Cvetkovic D 提出“求出图的第二大根λ2( G) ≤1 的所有图”这一问题,1993 年,Hong Y 和Cao D 给出了λ2(G)≤13 的所有图,紧接着Miroslav P给出了λ2( G) ≤2 - 1 的所有图,但对Cvetkovic D 的问题的解决还需进一步的努力。1998 年,作者给出了第二个大根不超过1 的所有树。该文分别给出了第二个大根小于2 的所有树和第二个大根等于2 的所有树。 In 1982, Cvetkovic D posed the problem of characterizing graphs with the second largest eigenvalue not greater than 1. Cao D and Hong Y determined graphs without isolated vertices with the property 0<λ 2(G)≤13 . In 1993, Miroslav P gave all grahps with the property λ 2(G)≤2-1 . There are great difficulty to solute the problem of Cvetkovic D. In 1998, We obtained all of trees whose second largest eigenvalue is not greater than 1. All of trees whose second largest eigenvalue is not greater than 2 are presented in this paper.
作者 束金龙
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第4期15-22,共8页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金!(No.19671029)
关键词 第二大特征根 直径 诱导子图 简单图 tree second largest eigenvalue diameter induce subgraph forbidden subgraph
  • 相关文献

参考文献3

  • 1Shu Jinlong,运筹学学报,1998年,2卷,3期,6页
  • 2Cao D,J Graphory,1993年,17卷,3期,325页
  • 3Hong Y,Linear Algebra Appl,1989年,113卷,141页

同被引文献17

  • 1[2]AN C. Bounds on the second largest eigenvalue of a tree with perfect matchings[J]. Linear Algebra Appl, 1998,283: 247-255.
  • 2[3]HOU Y , LI J. Boundson the largest eigenvalues of trees with a given size of matching[J]. Linear Algebra Appl, 2002,342: 203- 217.
  • 3[4]BONDY J A, MURTY U S R. Graph Theory with Applications[M]. New York: Macmillan, 1976.
  • 4[5]NUNMAIER A. The second largest eigenvalue of a tree[J]. Linear Algebra Appl, 1982,46:9-25.
  • 5[6]CVETKOVIC D M, DOOB M,SACHS H. Spectra of graphs-theory and application[M]. New York: Academic Press,1980.
  • 6Cao D, Hong Y. Graphs characterized by the second eigenvalue. J. Graph Theory, 1993, 17(3):325-331.
  • 7Chung F R K, Gyárfás A, Tuza Z, Trotter W T. The maximum number of edges in 2K2-free graphs of bounded degree. Discrete Math., 1990, 81: 129-135.
  • 8Cvetkovic D. On graphs whose second largest eigenvalue does not exceed 1. Publ. Inst. Math.(Beograd), 1982, 31(45): 15-20.
  • 9Cvetkovic D, Doob M, Gutman I and Torgasev A. Recent Results in the Theory of Graph Spectra.North-Holland-Amsterdam, 1988.
  • 10Cvetkovic D, Doob M and Sachs H. Spectra of Graphs-theory and application. Academic Press,New York, 1980.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部