期刊文献+

L-拓扑空间的半S_β-紧性 被引量:1

Semi-S_β-compactness in L-topological Spaces
原文传递
导出
摘要 在L-拓扑空间中引入半Sβ-紧性,这种紧性是针对任意L-模糊子集定义的,它是Sβ-紧性的推广。研究半Sβ-紧性的性质,如一个半Sβ-紧集与一个半闭集的交仍为半Sβ-紧的;半Sβ-紧性在不定映射下保持不变;由分明拓扑空间(X,τ)拓扑生成的L-拓扑空间(LX,ωL(τ))是半Sβ-紧的当且仅当(X,τ)是半紧的。此外,还给出了半Sβ-紧性的网式刻画。 In this paper,the notion of semi-Sβ-compactness is introduced in L-topological spaces.This compactness is defined for arbitrary L-fuzzy subsets and it is a generalization of Sβ-compactness.Some properties of the semi-Sβ-compactness is investigated,it is found that: the intersection of a semi-Sβcompact set and a semiclosed set is still semi-Sβ-compact;the semiSβ-compactness is preserved under irresolute mapping;the L-topological space (LX,ωL(τ)) generating by(X,τ) is semi-Sβ-compact if and only if(X,τ) is semi-compact.Moreover,the semi-Sβ-compactness can also be characterized by nets.
作者 何卫民
出处 《模糊系统与数学》 CSCD 北大核心 2011年第3期57-61,共5页 Fuzzy Systems and Mathematics
基金 广东省自然科学基金资助项目(8152902001000004) 江门市科技计划项目(2008[103])
关键词 L-拓扑空间 半开βa-覆盖 半β-聚点 半Sβ-紧性 L-topological Spaces Semiopen βa-cover Semi β-cluster Point Semi-Sβ-compactness
  • 相关文献

参考文献16

  • 1Chang C L. Fuzzy topological spaces[J]. Math. Anal. Appl. , 19{58, (24) : 182 - 190.
  • 2Ganter T E, et al. Compactness in fuzzy topological spaces[J]. Math. Anal. App1. , 1978, (62):547-562.
  • 3Goguen J A. The fuzzy Tychonoff theorem[J]. Math. Anal. Appl. , 1973, (43) : 734-742.
  • 4Liu Y M. Compactness and Tychonoff theorem in L-fuzzy topological spaces[J]. Acta Mathematica Siniea, 1981, (Z4) : 260-268.
  • 5李中夫.模糊拓扑空间中的紧性.科学通报,1983,:321-323.
  • 6Wang G J. A new fuzzy compactness defined by fuzzy nets[J]. Math. Anal. Appl. , 1983, (94) : 1-23.
  • 7Zhao D S. The N-compactness in L-fuzzy topological spaces[J]. Math. Anal. AppI. , 1987, (128) : 64- 70.
  • 8Lowen R. Fuzzy topological spaces and fuzzy compactness[J]. Math. Anal. Appl. ,1976, (56):6214633.
  • 9Lowen R. A comparison of different compactness notions in fuzzy topological spaces[J]. Math. Anal. Appl., 1978,(62):547-562.
  • 10Shi F G. Srcompactness in L-tolopological spaces[J ]. Proyeccioness, 2005,24 (2) : 153 - 165.

二级参考文献3

共引文献122

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部