期刊文献+

具有临界指数及奇异性的双调和方程解的存在性

Existence of solution for a singular biharmonic equation involving critical exponent
下载PDF
导出
摘要 运用变分方法和Sobolev不等式,研究了一类具有临界指数及奇异性的双调和方程,在一定条件下得到了方程至少存在一个解的结果. In this paper, a biharmonic equation, which involves the critical exponent and singular terms, is studied. By employing variational method and Sobolev inequality, the existence of at least one solution is established under some certain condition.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期175-179,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(10747003) 喀什师范学院校内重点课题
关键词 临界指数 奇异性 双调和椭圆方程 变分方法 critical exponent singular biharmonic equation variational method
  • 相关文献

参考文献1

二级参考文献16

  • 1Enrico, J.: The Role Played by Space Dimension in Elliptic Critical Problems. Journal of Differential Equations, 156(2), 407-426 (1999).
  • 2Garcia Azorero, J. P, Peral Alonso, I.: Hardy inequalities and some critical elliptic and parabolic problems.Journal of Differential Equations, 144, 446-476 (1998).
  • 3James, W, Dold Victor, A, Galaktionov Andrew, A, Lacey Juan, Luis V.: Rate of approach to a singular steady state in quasilinear reaction-diffusion equations. Ann. Scuola Noem. Sup. CI. Sci,XXVI(4),663-687 (1998).
  • 4Shen, Y. T, Deng, Y. H.: Nontrivial solutions of quasilinear elliptic equations of higher order. J. Sys. Sci.& Math. Scis, 5(4), 303-312(in Chinese)(1985).
  • 5Pucci, P, Serrin, J.: A general variational identity. Indiana Univ. Math. J, 35, 681-703 (1986).
  • 6Shen, Y. T, Yan, S. S.: Constant boundary value problem for a quasilincar elliptic system. Manusc. Math,79, 99-112 (1993).
  • 7Shen, Y. T.: Non-existence and Pohozaev identity for the singular solutions of quasilinear elliptic systems.Acta Mathematica Scientia, 17(4), 389-395(1997).
  • 8Brezis, H, Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math, 36, 437-477 (1983).
  • 9Pucci, P, Serrin, J.: Critical exponents and critical dimensions for polyharmonic equations. J. Math. Pure Appl, 09, 55-83 (1990).
  • 10Edmunds, D.E, Fortunato, D, Jannelli, E.: Critical exponents, critical dimensions and the biharmonic operator. Arch. Rational Mech. Anal, 112, 269-289 (1990).

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部