期刊文献+

包含Riesz基的Gabor框架

Gabor frames containing Riesz bases
下载PDF
导出
摘要 讨论一个Gabor框架是否包含一个Riesz基,利用Avdonin定理,证明了当函数满足suppg(?)[0,1]时,Gabor框架(g,1,b)包含一个L^2(R)的Riesz基,这里0<b<1. The authors discussed whether a Gabor frame contained a Riesz base. It proved, by Avdonin Theorem, that if the function g satisfies suppg [0,1], then the Gabor frames (g, 1 ,b) contains a Riesz base for L^2 (R) where 0〈b〈1.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期180-182,共3页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(10771082 10926126)
关键词 GABOR框架 RIESZ基 密度 Gabor frame Riesz basis density
  • 相关文献

参考文献11

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J], Trans Amer Math Soc, 1952,72:147-158.
  • 2Holub J. Pre frame operator: Besselian frames and near Riesz bases[J]. Proc Amer Math Soc, 1994,122.. 779 785.
  • 3Seip K. On the connection between exponential bases and certain related sequences in L2 ( -- n, n) [J]. J Funct Anal, 1995,130:131-160.
  • 4Christensen O. Frames containing a Riesz basis and approxi mation of the frame coefficients using finite dimensional methods[J]. J MathAna Appl,1996,199:256 270.
  • 5Casazza P G, Christensen O. Hilbert space frames containing a Riesz basis and Baoach spaces which have no subspace is- morphie to co[J]. J Math Anal Appl,1996,202:940 950.
  • 6Casazza P G,Christensen O. Frames containing a Riesz basis and preservation of this property under perturbations[J]. S I A M, J Math Anal, 1998,29(1):266-278.
  • 7Casazza P G. Modern tools for Weyl-Heisenberg(Gabor) frame theory[J]. Adv lmag Elect Phys, 2001, 115:1-127.
  • 8Hell C. History and evolution of the density theorem for Ga bor frames[J]. J Four Anal Appl 2007,13:113-166.
  • 9Janssen A J E M. Zak transforms with few zeros and the tie [C]. In Advances in Gabor Analysis, Feichtinger H G and strohmer T Eds, Birk auser, Boston, 2003:31-70.
  • 10Young Y M. An Introduction to Nonharmonic series[M]. New York : Academic Press, 1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部