期刊文献+

非平衡交通分配的离散网络平衡设计的遗传算法 被引量:1

Genetic algorithm for discrete network equilibrium design problem based on non-equilibrium traffic assignment
下载PDF
导出
摘要 针对离散网络平衡设计二层规划模型,提出了一种新的求解算法.二层规划模型中上层问题对它采用遗传算法,下层问题是平衡交通分配模型,对它采用非平衡交通分配方法的拟FrankWolfe算法,并给出了算例,数值试验结果表明本文提出的算法是有效的且计算量小、收敛较快. In this paper, a new algorithm for the bi-level programming model of discrete network equilibrium design problem is proposed. The upper model is solved by genetic algorithm and lower model by quasi-Frank-Wolfe algorithm. The numerical example is also presentd. The numerical results show that the algorithm is effective, and has the characteristics of simple computation and fast convergence speed.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期189-192,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(70771079) 中南民族大学中央高校基本科研业务费专项资金项目(ZZQ10007)
关键词 二层规划模型 遗传算法 非平衡交通分配 Frank-Wolfe算法 bi-level programming genetic algorithm model non-equilibrium traffic assignment Frank-Wolfe algorithm
  • 相关文献

参考文献9

二级参考文献38

  • 1Wardrop J G. Some theoretical aspects of road traffic research[J]. Proceedings of the Institute of Civil Engineers, Part II,1952,1:325-378.
  • 2Beckmann M, McGuire C B, Winsten C B. Studies in the Economics of Transportation[M]. Yale University Press, 1956.
  • 3Fulkushima M. A modified Frank-Wolfe algorithm for solving the traffic assignment problems[J]. Transportation Research, 1984,18B(2) :169-177.
  • 4Jayakrishnan R, Tsai W K, Prashker J N, Rajadhyaksha S. A faster path-based algorithm traffic assignment[J]. Transportation Research Record, 1994,1443 : 75-83.
  • 5Larsson T, Partriksson M. Simplicial decomposition with disaggregated representation for trffic assignment problems[J]. Transportation Science, 1992,26 : 4-17.
  • 6Nie Y, Zhang H M, Lee D H. Models and algorithms for the traffic assignment problem with link capacity constraints [J]. Transportation Research, 2004,38B: 285-312.
  • 7Dial R B. A probabilistic multi-path traffic assignment model which obviates path enumeration[J]. Transportation Research, 1971,5:83-111.
  • 8Bell G H. Alternatives to Dial's Logit assignment algorithm[J]. Transportation Research,1995,29B:287-296.
  • 9Akamatsu T. Cyclic flows, Markov process and stochastic traffic assignment[J]. Transportation Research,1996. 30B: 369-386.
  • 10Wong S C. On the convergence of Bell's Logit assignment formulation [J ]. Transportation Research, 1999,33B : 609- 616.

共引文献158

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部