期刊文献+

嵌套树状分叉网络的复合材料有效热导率的分形模型

Fractal model of effective thermal conductivity for porous media embedded with fractal-like tree networks
下载PDF
导出
摘要 根据分形理论和热电模拟技术,提出了嵌套树状分叉网络的复合材料有效热导率的分形模型.该模型表明复合材料有效热导率不仅与分形树状分叉网络的结构参数即分叉网络的直径比β、长度比α、分叉角θ、初级管道的长度l_0和直径d_0有关,而且还与湿相和非湿相的热导率及饱和度有关. A fractal model of effective thermal conductivity for porous media embedded with fractal-like tree networks is presented based on fractal theory and thermal-electrical analogy technology. The fractal model contains no empirical constant. And the results show that the proposed model relates effective thermal conductivity to microstructural parameters of fractal-like tree networks, such as diameter ratio β, length ratio γ0, branch angle θ, mother branching diameter do and mother branching length l0.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期217-222,共6页 Journal of Central China Normal University:Natural Sciences
基金 湖北第二师范学院校级青年基金
关键词 分形理论 热电模拟 树状分叉网络 热导率 饱和度 fractal theory thermal-electrical analogy fractal-like tree networks thermal conductivity saturation
  • 相关文献

参考文献21

  • 1Mauroy B, Filoche M, Andrade Jr J S, et al. Interplay be- tween geometry and flow distribution in an airway tree[J]. Phys Rev Lett, 2003, 90:148101(1 3).
  • 2Kitaoka H, Takaki R, Suki B. A three-dimension model of the human airway tree [J]. J Appl Physiol, 1999, 87: 2207-2217.
  • 3Mauroy B, Filoche M, Weibel E R, et al. An optimal bron chial tree may be dangerous [J]. Nature, 2004, 427:633-636.
  • 4Song C M, Havlin S, Makse H A. Self similarity of complex networks[J]. Nature, 2005, 433: 392-395.
  • 5Bejan A. Shape and Structure, From Engineering to Nature [M]. London:Cambridge University Press, 2000.
  • 6Alharbi A Y, Pence D V, Cullion R N. Fluid flow through microscale fractal like branching channel networks[J]. Jour nal of Fluids Engineering, 2003, 125: 1051-1057.
  • 7Alharbi A Y, Pence D V, Cullion R N. Thermal characteris tics of microscale fractal-like branching channels[J]. Journal of Heat Transfer, 2004, 126: 744-752.
  • 8Murray C D. The physiological principle of minimum work applied to the angle of branching of arteries[J]. J Gen Physi ol, 1926, 9:835-841.
  • 9Murray C D. A relationship between circumference and weight in trees and its bearing on branching angles[J] J Gen Physiol, 1927, 10: 725-729.
  • 10Bejan A. Constructal-theory network of conducting pathsfor cooling a heat generating volume[J]. Int J Heat Mass Transfer, 1997, 40: 799-816.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部