期刊文献+

基于动态阈值的模糊自适应控制高硬度球面磨削方法 被引量:4

Fuzzy Adaptive Control Optimization of High Hardness Sphere Grinding Based on Dynamic Threshold
下载PDF
导出
摘要 为避免高硬度球面磨削过程中工件表面被拉毛,测量电主轴电流而间接获得磨削力,以电主轴电流作为反馈量来控制高硬度球面磨削过程中的磨削力.针对高硬度球面磨削过程中磨削力的特点,采用基于动态阈值的模糊自适应控制策略(DTFACO),自动获取并实时调整电流阈值,对影响磨削力的磨削深度和摆动角速度在线模糊调整,以适应磨削过程并保持磨削过程稳定.实验结果表明,与定进给磨削方式(FFSG)磨削高硬度球面相比,在不降低磨削效率的情况下,DTFACO可以减小磨削后工件表面粗糙度,避免了高硬度球面磨削过程中工件表面被拉毛的现象. In order to avoid the scratches on the workpiece in the high hardness sphere grinding,the grinding force was got indirectly by measuring the motorized spindle current which is used as a feedback to control the grinding force of the high hardness sphere grinding.A fuzzy adaptive control optimization strategy based on dynamic threshold(DTFACO) was applied according to the features of the grinding force generated in the high hardness sphere grinding process.The current threshold can be auto obtained and rectified on line.The depth of cut and the swing angular speed which affect the grinding force can also be adjusted on line by fuzzy strategy to maintain the grinding process stable.The experimental results indicate that the fuzzy adaptive control optimization strategy based on dynamic threshold can decrease the roughness of the workpiece without decreasing the grinding efficiency.It can avoid the scratches on the workpiece in the high hardness sphere grinding.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第6期895-900,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51075273) 上海交通大学机械系统与振动国家重点实验室课题资助项目(MSVMS201104) 华中科技大学数字制造装备与技术国家重点实验室开放课题(2008-DMET-KF-001)
关键词 高硬度球面 磨削 动态阈值 模糊自适应控制 high hardness sphere grinding dynamic threshold fuzzy adaptive control optimization
  • 相关文献

参考文献8

  • 1Couey J A, Marsh E R, Knapp B R, et al. Monito- ring force in precision cylindrical grinding [J]. Preci- sion Engineering, 2005, 29(3): 307-314.
  • 2Xu C Y, Shin Y C. Control of cutting force for creep-feed grinding processes using a multi-level fuzzy controller [J]. Journal of Dynamic Systems, Measure- ment and Control, 2007, 129(4): 480-493.
  • 3Feng J, Kim B S, Shih A, et al. Tool wear monito- ring for micro-end grinding of ceramic materials [J]. Journal of Materials Processing Technology, 2009, 209 (11):5110-5116.
  • 4Xun C, Rowe W B, Allanson D R, et al. A grinding power model for selection of dressing and grinding condition [J]. Journal of Manufacturing Science and Engineering, 1999, 121(4): 632-637.
  • 5Lee D E, Hwang I, Valente C M O, etal. Precision manufacturing process motoring with acoustic emis- sion [J]. International Journal of Machine Tools & Manufacture, 2006, 46(2) : 176-188.
  • 6Konig W, Altintas Y, Memis F. Direct adaptive con- trol of plunge grinding process using acoustic emis- sion sensor [J]. International Journal of Machine tools & Manufacture, 1995, 35(10): 1445-1457.
  • 7Fernandes M H, Garitaonandia I, Albizuri J, et al. Simulation of an active vibration control system in a centerless grinding machine using a reduced updated FE model [J]. International Journal of Machine Tools & Manufacture, 2009, 49(3-4): 239-245.
  • 8Rowe W B, Li Y, Mills B, et al. Application of in- telligent CNC in grinding [J]. Computers in Industry, 1996, 31(1): 45-60.

同被引文献29

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部