期刊文献+

基于动态整体更新和试探机制的蜂群算法 被引量:6

Artificial bee colony algorithm based on dynamic wholly updating and tentative mechanism
下载PDF
导出
摘要 蜂群算法已被证明其效率高于多数传统优化算法,但是对于不可分离变量的函数则优势不明显。为平衡单维更新与整体更新,避免算法在某一方面开采过深陷入局部最优,通过计算单维开采成功率动态地控制参数limit,提出了一种单维更新和整体更新交替进行的混合算法。该算法在整体更新阶段采用基于试探机制的粒子群算法,避免种群飞向错误的方向。采用多种不同类型的基准函数对改进算法进行测试,数值实验结果验证了该算法的有效性。 Artificial bee colony(ABC)algorithm has been proven to be a better heuristic algorithm compared with other evolution algorithms.however,ABC has little advantage when used to optimize nonseparable functions.In order to balancing single dimesnsion updating(SDU)stage and wholly updating(WU) stage for avoiding local optimization,proposed a hybrid algorithm named artificial bee colony algorithm particle swarm optimization(ABCPSO) to implement the two stages by turns and balance the exploitation depths of the two stages by controlling the parameter 'limit' dynamically in line with the success rate of SDU stage.In the WU stage,adopted a tentative PSO for avoiding colony flying toward wrong direction.The results on the benchmark functions show the effectiveness of the proposed algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2011年第7期2508-2511,共4页 Application Research of Computers
关键词 粒子群 蜂群 单维更新 试探机制 动态平衡 particle swarm optimization artificial bee colony single dimension updating tentative mechanism dynamic balance
  • 相关文献

参考文献10

  • 1KARABOGA D. An idea based on honeybee swarm for numerical optimization, TR06 [ R ]. [ S. l. ] : Erciyes University,2005.
  • 2KARABOGA D, AKAY B. Comparative study of artificial bee colony algorithm [ J ]. Applied Mathematics and Computation, 2009,214 (1) :108-132.
  • 3KARABOGA D, BASTURK B. On the performance of artificial bee colony(ABC) algorithm [ J ]. Applied Soft Computing, 2008,8 ( 1 ) : 687-697.
  • 4纪震,周家锐,廖惠连,吴青华.智能单粒子优化算法[J].计算机学报,2010,33(3):556-561. 被引量:61
  • 5ALATAS B. Chaotic bee colony algorithms for global numerical optimization[ J ]. Expert Systems with Applications ,2010,37 ( 8 ) : 5682-5687.
  • 6罗钧,卢嘉江,陈伟民,付丽,刘学明,张平,陈建端.具有禁忌策略的蜂群算法评定圆柱度误差[J].重庆大学学报(自然科学版),2009,32(12):1482-1485. 被引量:7
  • 7丁海军,冯庆娴.基于boltzmann选择策略的人工蜂群算法[J].计算机工程与应用,2009,45(31):53-55. 被引量:60
  • 8KENNEDY J, EBERHART R. Particle swarm optimization [ C ]//Proc of IEEE International Conference on Neural Networks. Piscataway : [ s. n. ] ,1995.
  • 9LEUNG Y W,WANG Yu-ping. An orthogonal genetic algorithm with quantization for global numerical optimization [ J ]. IEfiE Trans on Evolutionary GOmlautation ,2001,5( 1 ) :41-53.
  • 10刘静,钟伟才,刘芳,焦李成.组织进化数值优化算法[J].计算机学报,2004,27(2):157-167. 被引量:19

二级参考文献46

  • 1陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 2李学军,常智勇,莫蓉,龚清洪.基于遗传算法的圆柱几何特征信息的测量[J].计算机工程与应用,2006,42(22):56-58. 被引量:6
  • 3茅健,郑华文,曹衍龙,徐旭松.基于粒子群算法的圆柱度误差评定方法[J].农业机械学报,2007,38(2):146-149. 被引量:16
  • 4Teodorovi' c D, Dell' Orco M.Bee colony optimization-a cooperative learning approach to complex transportation problems[C]//Proceedings of the 10th EWGT Meeting,Poznan,13-16 September 2005.
  • 5Drias H,Sadeg S,Yahi S.Cooperative bees swarm for solving the maximum weighted satisfiability problem,computational intelligence and bioinspired systems[C]//Proceedings of the 8th International Workshop on Artificial Neural Networks,IWANN 2005,Vilanova i la Gehr, Barcelona, Spain, 8-10 June 2005.
  • 6Abbass H A.Marriage in honey-bee optimization (MBO):a haplometrosis polyginous swarming approach[C]//The Congress on Evolutionary Computation,2001:207-214.
  • 7Abbass H A.A monogenous MBO approach to satisfiability[C]//Proceeding of the International Conference on Computational Intelligence for Modeling, Control and Automation, 2001.
  • 8Yang X S.Engineering optimizations via nature-inspired virtual bee algorithms[C]//Lecture Notes in Computer Science.Springer,2005: 317-323.
  • 9Karaboga D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[R].Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
  • 10CARR K, FERREIRA P. Verification of form tolerances Part Ⅱ: Cylindricity and straightness of a medianline [J].Precision Engineering, 1995, 17(2): 144 -156.

共引文献142

同被引文献41

  • 1E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelli- gence: Fromnatural to Artificial Systems [ M ]. New York : Oxford University Press, 1999:40 - 55.
  • 2D. Karaboga. An Idea Based on Honey Bee Swarm for Numerical Optimization [ R ]. Technical Report - TR06, Erciyes University ,2005.
  • 3S. Bitam, M. Batouche and E. Talbi. A Survey on Bee Colony Algorithms[ C ]. 2011 IEEE International Symposi- um on Parallel & Distributed Processing, Workshops and PhdForum ,2010-1 - 8.
  • 4A. L. Bolaji, A. T. Khader, M. A. Al- betar et al. An Improved Artificial Bee Colony for Course Timetabling [ C ]. 2011 Sixth International Conference on Bio - In- spired Computing: Theories Applications. IEEE Press, 2011:9 - 14.
  • 5M. S. Alam , M. W. Kabir and M. M. Islam. Self- adaptation of Mutation Step Size in Artificial Bee Colony Algorithm for Continuous Function Optimization [ C ]. 2010 13th International Conference on Computer and In- formation Technology,2010 : 69 - 74.
  • 6M. El-Abd. A Hybrid ABC-SPSO Algorithm for Cintin- uous Function Optimization[ C ]. 2011 IEEE Symposium on Swarm Intelligence, 2011 : 1 - 6.
  • 7Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
  • 8Horng M H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Application. 2011, 38(11): 13785- 13791.
  • 9Banhanisakun A, Achalakul T, Sirinaovakul B. The best-so far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(9): 2888-2901.
  • 10Ozttirk C, Karabea D, Grkemli B. Artificial bee colony algorithm for dynamic deployment of wireless sensor networks[J]. Turkish J of Electrical Engineering and Computer Sciences, 2012, 20(2): 1-8.

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部