摘要
研究了形如yTr(x5)+Tr(x3)的三次Bent函数,通过研究其导数的非线性度的下界,得到了该函数的二阶非线性度的下界,将所得结果与Carlet的结果进行了比较,结果表明,该函数的二阶非线性度大于Carlet给出的下界。
This paper studied a cubic Bent Boolean function of the form yTr(x5)+Tr(x3).By studying the lower bound of the nonlinearity of the derivative of this function,derived the lower bound on the second order nonlinearity of this form.The results demonstrate that the lower bound of the second order nonlinearity of the function of this form is larger than the general lower bounds obtained by Carlet.
出处
《计算机应用研究》
CSCD
北大核心
2011年第7期2687-2689,2718,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(60773121)
安徽省高等学校自然科学基金资助项目(KJ2008B124
KJ2011B146)
关键词
布尔函数
BENT函数
二阶非线性度
导数
Boolean function
bent function
second order nonlinearity
derivative