期刊文献+

基于模糊隶属度的人脸识别应用 被引量:4

Face recognition based on fuzzy membership
下载PDF
导出
摘要 针对人脸图像特征提取,应用主成分分析和二维主成分分析方法,提出用二维特征求解样本的隶属度,用主成分特征进行支持向量机分类的方法。该方法结合了二维主成分特征在选取少量分量时人脸重构图像稳定的优点和主成分特征重构图像局部特征清晰的优点。为了与二维主成分特征分类结果进行比较,通过引入矩阵内积,给出了针对二维特征的三类核函数。实验表明利用两种特征进行分类的方法在人脸识别中具有较高的精度。 According to analyze the main component analysis and the two-dimensional principal component analysis regarding face image feature extraction,using two-dimensional features for the calculation of the membership,this paper proposed the principal component for support vector classification.The method combined the stabilization of two-dimensional principal component in reconstructing face image and the obviousness of the principal component to the reconstructed image local characteristics.In order to contrast with the sort results of two-dimensional characteristics,through introduction of matrix inner product,gave three types of two-dimensional characteristics kernel function.Experiments show that the method has a high classification accuracy for face recognition.
出处 《计算机应用研究》 CSCD 北大核心 2011年第7期2789-2792,共4页 Application Research of Computers
基金 湖南省科技厅计划资助项目(2010CK3023 2009JT3003) 湖南省大学生研究性学习和创新性实验计划基金资助项目 长沙理工大学教研教改课题(JG1030 CN1006)
关键词 模糊支持向量机 隶属度 主成分分析 二维主成分分析 人脸识别 fuzzy support vector machine membership principle component analysis two-dimensional principal component analysis face recognition
  • 相关文献

参考文献9

  • 1FAGGIAN N, PAPLINSKI A,CHIN T J. Face recognition from video using active appearance model segmentation [ C ] // Proc of IEEE International Conference on Pattern Recogniton. Washington DC: IEEE Computer Scoiety, 2006:287-290.
  • 2SORIANO M, MARTINKAUPPI B, HUOVNEN S. et al. Using the skin lotus to cope with changing illumination conditions in color-based face tracking[ C]//Proc of IEEE Nordic Signal Processing Sympo-sium. Kolmarden : IEEE Press, 2000:383-386.
  • 3LIU Yong-guo, CHEN Gang, LU Ji-wen,et al. Face recognition based on independent component analysis and fuzzy support vector machine [ C ] //Proc of Intelligent Control and Automation Conference. 2006: 9889-9892.
  • 4陈长军,詹永照,文传军.支持向量描述鉴别分析及在人脸识别中的应用[J].计算机应用研究,2010,27(2):488-490. 被引量:7
  • 5YANG Jian, ZHANG D, YANG Jing-yu. Tow dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IEEE Trans on Pattern Analysis. Machine Intell,2004,26 (1) :131-137.
  • 6KUNCHEVA L. Combining classifiers by clustering, selection and decision templates[ R]. [S. 1. ] :University of Wales,2000.
  • 7PEREZ M. A hybrid fuzzy-SVM classifier, applied to gene expression profiling for automated leukaemia diagnosis [ C ]//Proc of the 25th IEEE Convention of Digital Object Identifier. 2008 : 041-045.
  • 8JOACHIMS T. Making large-scale support vector machine learning practical[ M ] //SCHOLKOPF B, BURGES C J C, SMOLAJ. Advances in Kernel Methods-Support Vector Learning. Cambridge: MIT Press, 1999.
  • 9吴巾一,周德龙.人脸识别方法综述[J].计算机应用研究,2009,26(9):3205-3209. 被引量:82

二级参考文献68

共引文献87

同被引文献46

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部