摘要
运用Liapunov第二方法研究系统x·= x〔a(x)- y〕y·= dy(x- m )正平衡点的稳定性. 采用Poincare- Bendixon 环域定理论证明了当a′(m )≥0 时,针对m 的不同数值,系统在R+ = {(x,y):x> 0,y> 0}内极限环的存在性稳定性,并结合几个具体方程进行了定性分析. 推广了文献[1]的结果.
In this paper,we utilize Liapunov's second method for follwoing system x·=x[a(x)-y] y·=dy[x-m]. We study the steadiness of positive balance points in this system.The main result is that limit rings of the system are existing and steady in R +={(x,y):x>0,y>0} when a′(m)≥0. We also carry on a qualitalive analysis of some conerate equations.
出处
《辽宁师范大学学报(自然科学版)》
CAS
1999年第4期284-288,共5页
Journal of Liaoning Normal University:Natural Science Edition