摘要
在细分网格曲面上,用最短哈密顿回路法通过连接网格节点去寻找最优路径,以形成填充曲线刀具路径。将空间曲面细分成有限四边形网格后,结合无向网上最短哈密顿回路求解算法,通过构建代价树的方法求解最短路径。应用了邻接矩阵的形式描述图形,及基于矩阵法数据存储的度数消减算法判断和处理图形,构建了空间网格曲面上最短哈密顿回路生成算法。通过一个曲面填充实例验证了构建算法的正确性,及用此方法生成曲面加工刀具路径的可行性。
Space-filling curve tool path can be formed through connecting the grid node on the mesh surface,the shortest Hamiltonian path algorithm is therefore found to search the optimal path.Space surface is subdivided into finite quadrilateral meshes,combining with the algorithm of the shortest Hamiltonian path to solve the shortest path by constructing cost tree.The graph is described by adjacent matrix,then judged and treated by algorithm of degree subtractive based on matrix data storage,thus a generation algorithm of the shortest Hamiltonian path is constructed on space mesh surface.An example has been given to testify the correctness of the algorithm,and the feasibility of using the method to generate the NC tool path.
出处
《机械设计与制造》
北大核心
2011年第7期93-95,共3页
Machinery Design & Manufacture
基金
陕西省教育厅专项科研计划项目(09JK327)
宝鸡文理学院院级项目(ZK09154)
关键词
细分网格曲面
填充曲线
刀具路径
Subdivision meshes surface
Space-filling curve
Tool path