期刊文献+

关于二阶非线性微分方程非振动解的渐近性 被引量:1

Asymptotic Behavior of Nonoscillatory Solutions of Second Order Differential Equations
下载PDF
导出
摘要 研究了二阶非线性微分方程(a(t)φ(y′(t)))′+f(t,y(t))=0,t≥t0的非振动解的渐近性. J Abstract: In the paper, the asymptotic behavior of the solutions of the differential equations,(a(t)φ(y1(t)))'+f(t,y(t))=0,t≥t0, was studied.
作者 苏丹 王其如
出处 《海南大学学报(自然科学版)》 CAS 2011年第2期109-113,共5页 Natural Science Journal of Hainan University
关键词 非振动解 渐近性 微分方程 nonoscillatory solutions asymptotic behavior differential equations
  • 相关文献

参考文献8

  • 1白玉真.一类二阶非线性微分方程解的振动性与渐近性[J].数学年刊(A辑),2002,23(3):339-344. 被引量:9
  • 2LI W T. Oscillation of certain second order nonlinear differential equation[ J]. J. Math. Anal. Appl. , 1998,217 : 1 - 14.
  • 3HWANG Tsang-hwai, LI Horng-jaan, YEH Cheh-chih. Asymptotic behavior of nonoscillatory solutions of second order differen- tial equations[ J]. Computer & mathematics with applications ,2005,50:271 - 280.
  • 4KULENOVIC M R S. LJUBOVIC C. The asymptotic behavior of nonoscillatory solutions of some nonlinear differential equa- tions[ J]. Nonlinear Analysis,2000,42:821 - 833.
  • 5彭名书,葛渭高,王准.非线性泛函微分方程解的性态[J].应用数学学报,2002,25(2):366-371. 被引量:16
  • 6LI Wan-tong. Oscillation of certain second-order nonlinear differential equations [ J ]. J. M. A. A, 1998,217:1 - 14.
  • 7WONG J Y, AGARWAL R P. Oscillatory behavior of solutions of certain second order nonlinear differential equations [ J ]. J Math. Anal. Appl. , 1986,198:337 - 354.
  • 8WONG P J Y, AGARWAL R P. Oscillatory behavior of solutions of certain second order nonlinear differential equations[ J] J. M. A. A, 1996,198:337 -354.

二级参考文献9

  • 1Li, W. T., Oscillation of certain second order nonlinear differential equations [J], J.Math. Anal. Appl., 217:1(1998), 1-14.
  • 2Wong, P. J. Y. & Agarwal, R. P., Oscillatory behavior of solutions of certain second order nonlinear differential equations [J], J. Math. Anal. Appl. 198(1996), 337-354.
  • 3Wong, P. J. Y. & Agarwal, R. P., Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations [J], Math. Comput. Modelling, 21:3(1995), 63-84.
  • 4Bai, Y. Z., Oscillatory and asymptotic behavior of solutions for second order difference equations [D], Master Thesis, Qufu Normal University, 1999.
  • 5Li Wantong.Positive Solutions of Second order Nonlinear Differential Equations[].Journal of Mathematical Analysis and Applications.1998
  • 6Peng Mingshu,Ge Weigao,Huang Lihong,Xu Qianli.A Correction on the Oscillatory Behavior of Solutions of Certain Second-order Nonlinear Differential Equations[].Applied Mathematics and Computation.1999
  • 7Li Wantong.Oscillation of Certain Second-order Nonlinear Differential Equations[].Journal of Mathematical Analysis and Applications.1998
  • 8Hsu H B,Yeh C C.Oscillation Theorems for Second Order Half-linear Differential Equations[].Applied Mathematics Letters.1996
  • 9Agarwal R P,Shiow-Ling Shieh,Cheh-chih Yeh.Oscillation Criteria for Second Order Retarded Differential Equations[].Mathematical and Computer Modelling.1997

共引文献18

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部