期刊文献+

一种脉冲编码CMOS神经元电路的设计与实现 被引量:3

A Design of Pulse Coded CMOS Neuron Circuit
下载PDF
导出
摘要 从生物神经元的电化学特性出发,基于积分发放(I&F)电路理论模型,提出了一种新型的结构紧凑的脉冲编码CMOS神经元电路,模仿神经元细胞体输出连续脉冲串。该模型的优点在于大大简化了模型结构,其运行结果很好地拟合了神经元的生理特性,且在工艺参数不可调节的情况下,可通过输入信号灵活控制电路结构,改变输入耦合权重,从而实现对输入信号的脉冲编码。HSPICE仿真结果表明,该电路可以通过输出脉冲串频率实现对多端输入的二进制方波信号的权重识别,在自适应耦合调整的信息传递,图像识别神经网络构建和信号调制方面具有很大的应用前景。 According to the electrochemical characteristics of biological neurons,this paper presents a new compact pulse coded CMOS neuron circuit based on IF model to imitate a continuous pulse steam generated by neuron cell.We show that the model has been simplified greatly,it characterizes many aspects of real neurons.In the case that the fabrication parameters of transistors cannot be adjusted,the circuit construction and coupled weights can be controlled flexibly by the input signals,then the circuit realizes the pulse code modulation of the input signals.The results of HSPICE simulation show that this circuit can realize the weight identification of the binary square-wave input signal according to the frequency of output pulse stream.This new pulse coded CMOS neuron circuit would have great application prospects in the information transmission,the construction of image recognition neural network and signal modulation.
出处 《电子器件》 CAS 2011年第3期286-291,共6页 Chinese Journal of Electron Devices
基金 国家863计划项目(2007AA03Z303) 国家973计划课题(2010CB934104)
关键词 脉冲编码 神经元 HSPICE 频率可调 pulse coded neuron HSPICE adjustable frequency
  • 相关文献

参考文献14

  • 1尹飞,赵波,冯大政.IF神经网络电路模型及其分析[J].现代电子技术,2008,31(8):12-14. 被引量:3
  • 2黄新,陈内萍,邓迎春.Integrate-and-Fire模型输入的最优解码[J].湖南师范大学自然科学学报,2006,29(3):23-26. 被引量:1
  • 3Ota Y, Wilamowski BM. Analog Implementation of Pulse-Coupled Neural Networks [ J ]. IEEE Transstions on Neural Networks, 1999, 10:539 -544.
  • 4Dowrick T, Hall S, McDaid L, et al. A Biologically Plausible Neuron Circuit [ C ]//International Joint Conference on Neural Networks,2007 ( IJCNN 2007 ). Orlando, FL,2007,715-719.
  • 5John VA, Boahen K. Silicon-Neuron Design : A Dynamical Systems Approach [ J ]. IEEE Transactions on Circuits and Systems I: Regular Papers,2010,1-8.
  • 6Wong YL, Peng X, Abshire P. Ultra-low Spike Rate Silicon Neuron [ C ]//Biomedical Circuits and Systems Conference, 2007 ( BIOCAS 2007 ) ,2007,95-98.
  • 7Johnson JL, Padgett ML. PCNN Models and Applications[ J]. IEEE Transstions on Neural Networks, 1999,10:480-498.
  • 8Farquhar E, l-Iasler P. A Bio-Physically Inspired Silicon Neuron[ J ]. IEEE Transactions on Circuits and Systems ,2005,52:477-488.
  • 9Livi P, Indiveri G. A Current-Mode Conductance-Based Silicon Neuron for Address-Event Neuromorphic Systems[ C ]//IEEE In- ternational Symposium on Circuits and Systems, 2009 (1SCAS 2009 ), Taipei, Taiwan ,24 May 2009 -27 May 2009,2898 -2901.
  • 10Lazzaro J. Low-Power Silicon Spiking Neurons and Axons[ C ]// IEEE International Symposium on Circuits and Systems, San Diego, CA, 1992,2220-2224.

二级参考文献13

  • 1韩济生.神经科学纲要[M].北京:北京医科大学中国协和医科大学联合出版社,1992.836.
  • 2STRONG S P,KOBERLE R.Entropy and information in neural spike trains[J].Phys Rev Lett,1998,80:197-200.
  • 3LEHMANN E,CASELLA G.The statistical analysis of series of events[M].Berlin:Springer,1999.
  • 4FENG J,BROWN D.Coeffcient or variation greater than 0.5 how and when?[J].Biol Cybern,1999,62:467-481.
  • 5FENG J.Is the integrate-and-fire model good enough? -areview[J].Neural Networks,2001,14:955-975.
  • 6ALDOUS D.Probability approxmation via the poisson clumping heuristic[M].Berlin:Springer,1989.
  • 7TUCKWELL H C.Stochastic processes in the neuroscience[ M].Philadelphia,PA:Society for industrial and applied mathematics,1998.
  • 8BROWN D,FENG J.Is there a problem matching model and real CV(ISI)[J].Neurocomputing,1999,26(7):117-122.
  • 9Jeng Jiwfeng. Behavious of Splice Outpwt jitter in the Intergrate - and - Fire Model[J]. Physical Review Letter, 1997, 79:4 505 - 4 508.
  • 10David Golomb G,Bard Ermentrout. Bistability in Pulse Propagation in Networks of Excitatory and Inhabittory Populations[J]. Physical Review Letter,2001(86) :4 179 - 4 182.

共引文献2

同被引文献29

  • 1常小龙,李川涛,原亮.基于电磁防护仿生概念电路演化修复关键技术研究[J].河北科技大学学报,2011,32(S1):168-171. 被引量:2
  • 2刘尚合.武器装备的电磁环境效应及其发展趋势[J].装备指挥技术学院学报,2005,16(1):1-6. 被引量:96
  • 3Koo J, Muchaidze G, Pommerenke D. Finding the root cause of an ESD upset event [C]//Santa Clara: DesignConference, 2006 : 1-24.
  • 4Nandy A. Prediction of soft error response of integrated circuits to electrostatic discharge injection via simulation field package interaction for electrostatic discharge soft error prediction full wave model for simulating noiseken electrostatic discharge generator[D]. Rolla, USA: Missouri-Rolla University, 2010: 1-155.
  • 5Negoita M, Hintea S. Bio-inspired technologies for the hard- ware of adaptive systems-Real-world implementations and applications [M]. Warsaw, Poland: Springer, 2008: 38-50.
  • 6Zebulum R S, Mojarradi M, Stoica A, et al. Self reconfigurable analog arrays: Off the shelf adaptive electronics for space applications [C] //NASA/ESA Conference on Adaptive Hardware and Systems, Northland: IOS Press, 2007: 529-535.
  • 7Schemmel J, Bruderle D, Grubl A, et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling [C]//Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Paris, France: ISCAS, 2010: 1947-1950.
  • 8Millner S, Grabl S, Meier A, et al. A VLSI implementation of the adaptive exponential integrate-and-fire neuron model [C]// Nevada, USA: In proceeding of NIPS, 2010: 1642-1650.
  • 9Higuchi T, LIU Y, YAO X. Evolvable hardware [M]. New York, USA: Springer, 2006:1-10.
  • 10Baslow M H. The languages of neurons: An analysis of coding mechanisms by which neurons communicate, learn and store information [J]. Entropy, 2009, 11 (4): 782-797.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部