期刊文献+

计算资源共享平台中基于分类器的可用性预测

Classifier-based availability prediction for computing resource sharing platform
下载PDF
导出
摘要 提出与描述了计算资源共享平台中的网络资源的可用性预测方法,该方法使用了基于数据挖掘的分类器算法,采用了分布式数据收集器工具,该工具运用收集数据和跟踪数据的方式来获取的预测的可用性的信息,从而完成资源的使用情况的预测。讨论了实现资源可用性预测的软件框架,描述了资源预测的具体过程。实验结果表明,即使在高挥发性的分布式计算平台中,该资源可用性预测技术能够很好地预测计算资源共享平台中机器的处理器利用率、内存的负载、机器的可用性,为调度器和副本备份提供参考。 The classifier-based availability prediction for computing resource sharing platform is presented and described. It uses the distributed data collector tools and can assess the feasibility and accuracy of predicting desktop resources availability from academic organizations based on the resource usage traces collected from desktop machines. The software framework for automated behavior prediction of this approach is discussed subsequently. The prediction processes are also described in detail. The results show that indeed even such a highly volatile environment allows for meaningful and robust prediction of a variety of metrics, It can provide effective support for better usage of resources in computing resource sharing platform and for improving their dependability.
作者 张远夏
出处 《计算机工程与设计》 CSCD 北大核心 2011年第7期2306-2308,2318,共4页 Computer Engineering and Design
关键词 资源共享平台 可用性预测 分类器算法 数据挖掘 数据收集器 resource sharing platform availability prediction classifier algorithms data mining data collector
  • 相关文献

参考文献15

  • 1中国分布式计算总站20110218[S].http://www.equn,com/.
  • 2Shudo K,Tanaka ~,Seklguchi S.P3:P2P-based middleware enab- ling transfer and aggregation of computational resources [C]. Proc of the IEEE International Symposium on Cluster Compu- ting and the Grid,2005:259-266.
  • 3Andrade N,Cirne W, Brasileiro F, et al.Ourgrid:An approach to easily assemble grids with equitable resource sharing [C]. 9th Workshop on Job Scheduling Strategies for Parallel Processing, LNCS 2862.Seattle,Washington: Springer-Verlag,2003:61-86.
  • 4Anglano C,Canonico M,Guazzone M,et al.Peer-to-Peer desktop grids in the real world:the sharegrid project[C].Proceedings of 8th IEEE International Symposium on Cluster Computing and the Grid,2008:621-626.
  • 5Patoli Z, Gkion M, Al-Barakati A, et al. How to build an open source render farm based on desktop grid computing[C].Hussain D M A,Rajput A Q K, Chowdhry B S, et al.Communications inComputer and Information Science.Springer,2008:268-278.
  • 6Petrou D,Gibson G, Ganger G.Scbeduling speculative tasks in a compute farm[C].Proceedings of the ACM/IEEE Conference on Supercomputing,2005.
  • 7Choi S,Kim H,Byun E,et al.Characterizing and classifying desk- top grid[C]. Washington, DC, USA:Proceedings of the Seventh International Symposium on Cluster Computing and the Grid. 1EEE Computer Society,2007:743-748.
  • 8Gupta R, Sekhri V, Somani A.CompuP2P:Architeeture for intemet computing using peer-to-peer networks[J].IEEE Transactions on Parallel and Distributed Systems,2006,17(11 ): 1306-1320.
  • 9Akshay Luther, Rajkumar Buyya,Rajiv Ranjan,et al.Alchemi:A. NET-based enterprise grid computing system [C]. Las Vegas, USA:Proceedings of the 6th International Conference on Inter- net Computing,2005:27-30.
  • 10Weka 3:Data mining software in Java[S]. http://www.cs.waikato. ac.nz/ml/weka,/,20 11-02-18.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部