期刊文献+

基于多分类器的金融领域多元关系信息抽取算法 被引量:6

Multi-relation extraction in finance based on multi-classifier
下载PDF
导出
摘要 为深入分析金融领域文本信息给投资决策提供支持,研究了从中文文本中识别收购类事件描述句及抽取事件角色(即识别关系及关系的元)相关问题。在事件句的识别上,提出了基于SVM的有监督算法。对于关系识别及关系元的抽取,针对多元关系的特点,分别设计了单分类器的算法和多分类器的算法,单分类器的算法由一个分类器负责识别多元关系的所有角色,而多分类器算法使用不同的分类器来识别具有不同语义约束的角色。实验结果表明,多分类器的算法明显优于单分类的算法,角色识别的F-Measure可以提高1.9%。 To analyze financial text information and support investment decision, event description sentence detection of purchasing and selling assets and event role identification (recognizing relation and relation elements) from Chinese texts are studied. An algorithm based on SVM is investigated to detect event description sentences. Considering the characteristics of multi-relation, two algorithms are designed to identify relation and reiation elements. One is based on a single-classifier which identifies all the roles of multi-relation through one classifier, and the other is based on a multi-classifier which designs a classifier for each semantic role separately. The experimental results demonstrate that the multi-classifier algorithm performs better than the mono-classifier algorithm, and the F-Measure of event role identification can be improved by 1.9%.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第7期2348-2351,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(90409007)
关键词 事件抽取 事件识别 角色识别 多元关系 有监督学习 event extraction event detection event role identification multi-relation supervised learning
  • 相关文献

参考文献14

  • 1Elena Filatova, Vasilesios Hatzivassiloglou.Event-based extractive summarization [C]. Barcelona, Spain: Proceeding of ACL Workshop on Summarization,2004:104-111.
  • 2David Ahn.The stages of event extraction[C].USA:Proceedings of the Workshop on Annotating and Reasoning About Time and Events,Association for Computational Linguistics Morristown, 2006:1-8.
  • 3Julie A Black,Nisheeth Ranjan.Automated event extraction from Email [DB/OL] .http://nlp.stanford.edu/courses/cs224rd2004/ jblack-final-report.pdf,2004.
  • 4赵妍妍,王啸吟,秦兵,等.中文事件抽取中事件类别的自动识别[C].第三届学生计算语言学研讨会论文集,2006:240-245
  • 5Tan Hongye, Zhao Tiejun, Zheng Jiaheng. Identification of Chinese event and their argument roles [C]. Sydney, Australia: Proceedings of the IEEE 8th International Conference on Com- puter and Information Technology Workshops.lEEE Computer Society,2008:14-19.
  • 6Chen Zheng,Ji Heng.Language specific issue and feature explo- ration in Chinese event extraction [C]. Boulder, Colorado: Pro- ceedings ofNAACL HLT,2009:209-212.
  • 7Fu Jianfeng,Liu Zongtian,Zhong Zhaoman,et al.Chinese event extraction based on feature weighting [J]. Information Techno- logy Journal,2010,9( 1 ): 184-187.
  • 8Saeedeh Momtazi,Dietrich Klakow.Language model-based sen- tence classification for opinion question answering systems[C]. Mrgowo, Poland: Proceedings of Computational Linguistics Applications,2009:251-255.
  • 9Martina Naughton,Nicola Stokes,Joe Carthy.Investigating statis- tical techniques for sentence-level event classification[C].Man- chester: Proceeding of the 22nd Intemational Conference on Computational Linguistics,2008:617-624.
  • 10Anthony Khoo,Yuval Maron,David Albrecht.Experiments with sentence classification [C]. Sydney, Australia: Proceedings of Australasian Language Technology Workshop,2006:18-25.

共引文献3

同被引文献75

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部