期刊文献+

基于两级分类器串行的人脸识别

Face recognition based on two-level serial classifier
下载PDF
导出
摘要 在分析人脸特征提取和分类器的基础上,提出一种两级分类器串行结合的模型进行人脸识别。在第一级分类器中利用极坐标傅立叶变换提取全局特征通过相似度匹配进行粗略的筛选,第二级分类器中利用改进的协同神经网络,基于原始灰度图像的小波变换提取内在特征,进行精细识别。研究分析了分类器串行结合模型中阈值的选取与系统精度、速度间的关系。在自建人脸库和Yale B人脸库上的实验结果表明,两级分类器串行的识别模型在保证较高系统识别率的前提下可以提升系统的速度。 After analyzing feature extraction and classifier, model of two serial classifier for face recognition is proposed. In the first level classifier, uses polar Fourier transform to extract global features and similarity matching is used for coarse screening. In the second level classifier, uses the improved synergetic neural network to fine recognition based on the intrinsic features that extracted directly from the gray scale extracted by wavelet transforms. Then the research on relationship between threshold selection and system accuracy, speed based on serial combination model. Finally, experiments on self face database and Yale B face database validate that the proposed two serial classifier face recognition model can improve the system speed under the conditions of a higher recognition rate.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第7期2485-2489,共5页 Computer Engineering and Design
基金 肇庆市科技创新基金项目(2010G22)
关键词 人脸识别 特征提取 傅立叶变换 小波变换 协同神经网络 face recognition feature extraction Fourier transform wavelet transform synergetic neural network
  • 相关文献

参考文献16

  • 1Unsang P, Tong Yi-ying,Jain A K.Age-invariant face recognition [J].IEEE Trans Pattern Anal Math Intell,2010,32(5):947-954.
  • 2Xu D, Yan S C, Luo J B.Face recognition using spatially con- strained earth mover's distance[J].IEEE Trans on image proces- sing,2009,18(11):2256-2260.
  • 3Liu Z M,Liu C J.A hybrid color and frequency features method for face recognition[J].IEEE Trans on Image Processing,2008,17 (10):1975-1980.
  • 4Savvides M,Heo J,Abiantun R, et al.Class dependent kernel dis- crete cosine transform features for enhanced holistic face recog- nition in FRGC-II [C]. Proc of the Int' 1 Conf on Acoustics, Speech and Signal Processing.IEEE Signal Processing Society, 2006:185-188.
  • 5黄璞,陈才扣.基于局部人脸图像的ICA人脸识别方法[J].计算机工程与设计,2010,31(11):2550-2553. 被引量:9
  • 6Ahonen T, Hadid A,Pietikainen M.Face description with local bi- nary patterns: application to face recognition[J].IEEE Transac- tion on Pattern Analysis and Machine Intelligence,2006,28(12): 2037-2041.
  • 7王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 8苏煜,山世光,陈熙霖,高文.基于全局和局部特征集成的人脸识别[J].软件学报,2010,21(8):1849-1862. 被引量:117
  • 9Soyel H,Demirel H.Facial expression recognition using 3D fa- cial feature distances [C]. Montreal Canada: Proceedings of the 4th International Conference on Image Analysis and Recogni- tion,2007:831-838.
  • 10Xu Q Z,Zhang P Z,Yang L X,et al.A facial expression recogni- tion approach based on novel support vector machine tree[C]. Nanjing,China:Proceedings of the 4th International Symposium on Neural Networks,2007:374-381.

二级参考文献39

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部