期刊文献+

由分数布朗运动驱动的带跳的随机微分方程的解

The solutions of the stochastic differential equation driven by fractional Brownian motion
下载PDF
导出
摘要 论述了由分数布朗运动驱动的带跳的随机微分方程的系数满足Lipschitz条件时解的存在性和唯一性。 This article mian discusses the stochastic differential equation driven by fractional Brownian motion with jump, the coefficient in the equation satisfy Lipschitz conditions, existence and uniqueness.
出处 《齐齐哈尔大学学报(自然科学版)》 2011年第4期76-79,共4页 Journal of Qiqihar University(Natural Science Edition)
基金 陕西省自然科学基金项目--分数布朗运动驱动的随机微分方程及其应用(2010JM1010)
关键词 分数布朗运动 随机微分方程 LIPSCHITZ条件 Poisson点过程 fractional Brownian motion stochastic differential equation Lipschitz condition Pisson point process
  • 相关文献

参考文献6

  • 1He X, Gopalsamy K. Persistence,attractivity,and delay in facuhative mutualism[J]. J.Math.Anal.Appl., 1997, 215 : 154-173.
  • 2Coutin L, Qian Z. Stochastic differential equations for fractional Brownian motion [J]. C. R. Acad. Sci. Paris Ser I Math, 2000, 331 : 75-80.
  • 3Elliott R J, Hock J. A general fractional white noise theory and application to finance [J]. Mathematical Finance, 2003, 13(2): 301-330.
  • 4David N, Aurel R. Differential equation driven by fractional Brownian motion [J]. Collect. Math, 2002, 53 : 55-81.
  • 5Kleptsyna M L, Kloeden P E, Ailll V V. Existence and uniqueness theorems for fractional Brownian motion stochastic differential equations [J]. Problem Inform.Transmission, 1999, 34: 332-341.
  • 6Kuang Y. Delay diffenertial equations with applications in population dynamics[M]. Boston: Academic Press, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部