期刊文献+

利用偏振滤波的自动图像去雾 被引量:12

Automatic image dehaze using polarization filtering
原文传递
导出
摘要 针对雾天退化图像提出一种自适应图像复原方法。该方法基于定义的偏振图像暗通道,自动提取图像中的天空区域,由此获得大气光的强度和偏振度;采用偏振滤波提取大气光强信息,并基于最小归一化互信息原则对估计的大气光偏振度进行优化;根据大气光强的变化规律,对大气光强的分布进行修复;将大气光强作为加性噪声予以扣除,并补偿因大气衰减带来的影响,最终复原得到场景的辐射强度信息。实验结果表明,该方法能够有效地改善雾天下图像的退化现象,提高了图像的清晰度。 To overcome the degraded images taken in hazy weather, an adaptive image restoration method was proposed. Firstly, by introducing dark channel for polarization images, sky regions are automatically segmented from the image, so the intensity and the degree of polarization of airlight can be acquired. Then, atmospheric light intensity information is extracted by polarization filtering, and used to optimize the degree of polarization of airlight by adopting the criteria of minimum normalized mutual information. After that, the distribution of atmospheric light intensity is repaired according to its change law. Finally, by removal of atmospheric light intensity, and compensation for attenuated effect of airlight, the scene radiation intensity information is recovered. Experimental results have shown that the proposed algorithm can alleviate the degradation of the image efficiently, and enhance the definition of the image.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第7期1178-1183,共6页 Journal of Image and Graphics
关键词 去雾 偏振滤波 图像复原 dehaze polarization filtering image restoration
  • 相关文献

参考文献1

二级参考文献7

  • 1Grewe L L, Brooks R R. Atmospheric attenuation reduction through multisensor fusion [ A ]. In : Proceedings of the SHE International Conference Society for Optical Engineering on Sensor Fusion: Architectures,Algorithms,and Applications Ⅱ[ C]. Orlando, Florida, United States, 1998:102-109.
  • 2Yitzhaky Y, Dror I, Kopeika N S. Restoration of atmospher/cally blurred images according to weather-predicted atmospheric modulation transfer function [ J ] . Optical Engineering, 1998, 36 ( 11 ) : 3064-3072.
  • 3McCartney E J. Optics of Atmosphere: Scattering by Molecules and Particles[ M ]. New York : John Wiley and Sons, 1976:23-32.
  • 4Cozman F, Krotkov E. Depth from scattering[ A]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[ C ]. San Juan, Puerto Rico, 1997:801-806.
  • 5Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 ( 6 ) :713-724.
  • 6Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for degradation [ J ]. IEEE Transactions on Image Processing, 1998, 7 (2) : 167-179.
  • 7Narasimhan S G, Nayar S K. Vision and the atmosphere [ J]. International Journal of Computer Vision, 2002, 48 (3) :233-254.

共引文献63

同被引文献118

引证文献12

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部