期刊文献+

单参数控制的灰度图像着色 被引量:2

Gray-scale image colorization based on the control of single-parameter
原文传递
导出
摘要 灰度图像着色是计算机图形学和计算机图像处理等领域的研究热点,在影视制作、数字照片编辑、动漫艺术等方面具有重要的应用价值。传统的方法通过大量的交互操作实现灰度图像中不同区域的聚类或者色源图像和灰度图像之间的匹配,大大降低了着色的效率。提出一种新的基于单参数控制的灰度图像着色方法。首先,利用球体几何理论建立色彩变换模型。其次,基于线性回归的方法,对色源图像和灰度图像的直方图分别进行多项式拟合建模。用户输入拟合多项式的阶数之后,可以实现色源图像和灰度图像的自动聚类并建立它们之间的匹配关系。最后,通过色源图像和灰度图像之间的颜色映射实现灰度图像的着色。该方法无须烦琐的用户交互,使得着色过程更为方便快捷。 Gray-scale image colorization is a hot topic in both computer graphics and image processing. It can be widely applied in film and television production, digital photo editing, animation industry, etc. A great number of user interactions, which greatly reduces the efficiency of colorization, are involved in conventional methods to achieve clustering of the gray-scale image or the matching between the gray-scale image and the source image. This paper presents a novel gray-scale image colorization method based on the control of single-parameter. Firstly, colorization model based on the theory of analytic geometry is presented. Secondly, based on the linear regression method, we calculate the polynomial fitting model of the histograms of the source image and the gray-scale image respectively. After users input the order of the polynomials, the clustering and matching of the source image and the grayscale images could be achieved automatically. Finally, the colorization is realized by transferring the color of source image to its corresponding area of the gray-scale image. This method greatly eliminates the user interactions, making the process of colorization more convenient and efficient.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第7期1297-1302,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60803047) 教育部博士点基金项目(200800561045) 北京大学数字中国研究院新研究基金项目(W09HP01-1) 空间信息集成与3S工程应用北京市重点实验室(北京大学)开放基金项目(SIIBKL09-1-02)
关键词 着色 灰度图像 色源图像 多项式拟合 colorization gray-scale image source image polynomial fitting
  • 相关文献

参考文献3

二级参考文献30

  • 1赵国英,李华.人体脸部灰度图像上色的改进算法[J].计算机辅助设计与图形学学报,2004,16(8):1051-1056. 被引量:17
  • 2Levin A, Lischinski D,Weiss Y. Colorization using optimization//Proceedings of the ACM SIGGRAPH 2004. Los Angeles, California, USA, 2004:689-694
  • 3Welsh T, Ashikhimin M, Mueller K. Transferring color to greyscale images. ACM Transactions on Graphics, 2002, 21 (3): 277-280
  • 4Qu Y, Wong T T, Heng P A. Manga colorization. ACM Transactions on Graphics, 2006, 25(3): 1214-1220
  • 5Liron Y, Guillermo S. Fast image and video colorization using chrominance blending. IEEE Transactions on Image Processing, 2006, 15(5): 1120-1129
  • 6Jack K. Video Demystified. 3rd Edition. Amsterdam, The Netherlands: Elsevier Science & Technology, 2001
  • 7Press W, Teukolsky S, Vetterling W, Flannery B. Numerical Recipes in C: The Art of Scientific Computing. Cambridge, UK : Cambridge University Press, 1992
  • 8Hertzmann A, Jacobs C, Oliver N et al. Image analogies// Proceedings of the ACM SIGGRAPH 2001. Los Angeles, California, 2001:327-340
  • 9[美]CastlemanKennethR. 朱志刚 等译.数字图像处理 [M].北京: 电子工业出版社,1998..
  • 10Reinhard Erik, Ashikhmin Michael, Gooch Bruce, et al. Color transfer between images [J].IEEE Computer Graphics and Applications, 2001, 21(5): 34~41

共引文献35

同被引文献35

  • 1贾云涛,胡事民.基于图切分的交互式图像染色算法[J].计算机学报,2006,29(3):508-512. 被引量:15
  • 2滕升华,谌安军,邹谋炎.一种基于拉普拉斯方程的图像彩色化方法[J].中国图象图形学报,2006,11(4):545-548. 被引量:13
  • 3LIU Xiaopei, WAN Liang, LIN Stephen. Intrinsic colorization [J]. ACM Transactions On Graphics, 2008, 27 (5): 1521-1529.
  • 4Sapiro G. Inpainting the colors [C]. Genoa, Italy: IEEE In- ternational Conference on Image Processing, 2005: 698-701.
  • 5Sung H K, March R. Variational models for image eolorization via chromaticity and brightness decomposition [ J ]. IEEE Transactions on Image Processing, 2007, 16 (9): 1151-1161.
  • 6Liu B B, Lu Z M. Image colourisation using graph-based semi- supervised learning [J]. IET Image Proeessing, 2009, 3 (3) : 115-120.
  • 7Beck, Amir. Fast gradient-based algorithms for constrained to- tal variation image denoising and deblurring problems [J]. IEEE Transactions on Image Processing, 2009, 18 (11): 2419-2434.
  • 8Frohn S, Claudia, Henn, et al. Multigrid based Total varia- tion image registration [J]. Computing and Visualization in Science, 2008, 11 (2): 101-113.
  • 9Oliveira, Joao P, Bioucas-Dias, Jos6 M, et al. Adaptive to- tal variation image deblurring: A majorization-minimization approach [J] . Signal Processing, 2009, 89 (9):1683-1693.
  • 10Pi L, Shen C, Li F, et al. A variational formulation for seg- menting desired objects in color images [J]. Image and Vision Computing, 2007, 25 (9). 1414-1421.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部