期刊文献+

结合形状滤波和几何图像的3D人脸识别算法 被引量:10

Three dimensions face recognition by using shape filtering and geometry image
原文传递
导出
摘要 表情变化是3维人脸精确识别面临的主要问题,为此提出一种新的对表情鲁棒的匹配方法。通过形状滤波器将人脸空域形状分成不同频率的3个部分:低频部分对应表情变化;高频部分代表白噪声;包含身份区分度最大的中频信息作为表情不变特征。再利用网格平面参数化,将人脸网格映射到边界为正四边形的平面区域内,经过线性插值采样得到3维形状的2维几何图像。最后通过图像匹配识别人脸。FRGC v2人脸数据库上的实验结果表明,使用形状滤波能显著提高算法的精度和鲁棒性。 Achieving high fidelity in the presence of expression variation remains one of the most challenging aspects of 3D face recognition. In this paper, we propose a novel recognition approach for robust and efficient matching. The framework is based on shape processing filters that divide face into three components according to its frequency spectra. Low-frequency band mainly corresponds to expression changes. High-frequency band represents noise. Mid-frequency band is selected for expression-invariant feature that contains most of the discriminative personal-specific deformation information. After bijectively mapping facial mesh into square domain based on mesh parametrization, we obtain 2D geometry image of 3D shape with linear interpolation for face matching. We conduct extensive experiments on FRGC v2 databases to verify the efficacy of the proposed algorithm, and validate that by using shape filter, it offers a performance improvement for both accuracy and robustness.
作者 蔡亮 达飞鹏
出处 《中国图象图形学报》 CSCD 北大核心 2011年第7期1303-1309,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60775025) 江苏省自然科学基金重点项目(BK2010058) 新世纪优秀人才支持计划项目(NCET-07-0178)
关键词 3D人脸识别 形状滤波 几何图像 表情变化 3D face recognition shape filtering geometry image expression variation
  • 相关文献

参考文献15

  • 1Bowyer K, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D +2D face recognition [ J]. Computer Vision and Image Understanding, 2006, 101 ( 1 ) : 1-15.
  • 2Zhao W, Chellappa R, Phillips P, et al. Face recognition: A literature survey [ J]. ACM Computing Surveys, 2003, 35 (4) : 399-458.
  • 3Al-Osaimi F, Bennamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognition [ J 1. International Journal of Computer Vision, 2009, 81 ( 3 ) : 302-316.
  • 4Lu X, Jain A. Deformation modeling for robust 3D face matching [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1357.
  • 5Faltemier T, Bowyer K, Flynn P. Using multi-instance enrollment to improve performance of 3 D face recognition [ J ]. Computer Vision and Image Understanding, 2008, 112 (2): 114-125.
  • 6Samir C, Srivastava A, Daoudi M. Three-dimensional face recognition using shapes of facial curves [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 11 ) : 1858-1863.
  • 7Bronstein A, Bronstein M, Kimmel R. Three-dimensional face recognition [ J]. International Journal of Computer Vision, 2005, 64(1) : 5-30.
  • 8Kakadiaris I, Passalis G, Toderici G, et al. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (4): 640-649.
  • 9Passalis G, Kakadiaris I, Theoharis T. Intraclass retrieval of nonrigid 3D objects: Application to face recognition [ J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2007, 29(2) : 218-229.
  • 10Gu X, Gortler S, Hoppe H. Geometry images [ C ]// Proceedings of SIGGRAPH. New York : Association for Computing Machinery, 2002: 355-361.

同被引文献85

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2马里千,王灿,刘宏.基于Adaboost人脸检测融合五官特征的性别识别[J].华中科技大学学报(自然科学版),2013,41(S1):125-128. 被引量:7
  • 3蔡念,胡匡祜,李淑宇,苏万芳.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245. 被引量:31
  • 4柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 5Bowyer K, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face rec- ognition [J]. Computer Vision and Image Understand- ing, 2006, 101(1) : 1 -15.
  • 6Cai Liang, Da Feipeng. Nonrigid-deformation recovery for 3D face recognition using multiscale registration [J]. IEEE Computer Graphics and Applications, 2012, 32(3) : 37 -45.
  • 7Al-Osaimi F, Bennamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognition [J]. International Journal of Computer Vision, 2009, 81(3) : 302-316.
  • 8Lu X, Jain A. Deformation modeling for robust 3D face matching [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 ( 8 ) : 1346 - 1357.
  • 9Faltemier T, Bowyer K, Flynn P. Using multi-instance enrollment to improve performance of 3D face recogni- tion [ J ]. Computer Vision and Image Understanding, 2008, 112(2) : 114-125.
  • 10Bronstein A M, Bronstein M M, Kimmel R. Three-di- mensional face recognition [ J ]. International Journal of Computer Vision, 2005, 64( 1 ): 5-30.

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部