摘要
解析函数f(z)的模最小零点满足一定条件时,可由[f(z)]- 1= ∞n= 0bnzn 幂级数前后项系数比的序列{bn/bn+ 1}∞n= 0所逼近.据此,得出求解析函数模最小零点的倒数幂级数法.
It is discussed when the modulus mininum zero point of the analytic function f(z) satisfies with given conditions,the sequence { b n/b n+1 } ∞ n=0 ,which is made up of coefficient ratio of the former and the latter term of the power series [f(z)] -1 ∞n=0b nz n, can convergent to the point.On this base,the method of reciprocal power series for finding modulus mininum zero point of analytic function is obtained.
出处
《广西大学学报(自然科学版)》
CAS
CSCD
1999年第4期313-317,共5页
Journal of Guangxi University(Natural Science Edition)
关键词
解析函数
模最小零点
倒数幂级数法
零点
analytic function
modulus mininum zero point
method of reciprocal power series