期刊文献+

非线性分数阶微分方程三点边值问题解的存在性(英文)

Existence of Solution for a Three-point Boundary Value Problem of Nonlinear Fractional Differential Equation
下载PDF
导出
摘要 讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算于是Riemann-Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解. In this paper, we discuss a three-point boundary value problem for a nonlinear differ- ential equation of fractional order. The differential operator is the Riemann-Liouville derivative and the inhomogeneous term depends on the fractional derivative of lower order. We obtain the existence of at least one solution for integral equation using Schauder fixed-point theorem. Our analysis relies on the reduction of the problem considered considered to the equivalent Fredholm integral equation.
作者 韩仁基 蒋威
出处 《数学研究》 CSCD 2011年第2期128-138,共11页 Journal of Mathematical Study
基金 supported by the National Nature Science Foundation of P.R. China(10771001) the Key Program of Ministry of Education of P.R.China(205068)
关键词 非线性分数阶微分方程 Riemann-Liouville分数阶导数 三点边值 GREEN函数 存在性 SCHAUDER不动点定理 Three-point boundary value problem Riemann-Liouville fractional derivative Ex-istence Green's function Schauder fixed-point theorem.
  • 相关文献

参考文献1

二级参考文献5

  • 1Bai Z B, Lii H S. Positive solutions for boundary value problem of nonlinear fractional differential equa- tion[J]. J Math Anal Appl, 2005, 311:495-505.
  • 2Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12.
  • 3Gejji V D, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equa- tions[J]. J Math Anal Appl, 2005, 301:508-518.
  • 4Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York/London/Toronto: Academic Press, 1999. vol, 198.
  • 5Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives (Theory and Applications)[M]. Switzerland: Gordon and Breach, 1993.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部