摘要
讨论了有限个超越整函数f_i(i=1,2,…,m}迭代生成的函数g=f_1o f_2 o…of_m的Fatou分支的性质,给出了g(z)的Fatou分支有界的一个充分条件.并证明了在该条件下,对g的任意游荡域U,都有{g^n}的一个子列在U上趋于∞.
Let fj be transcendental entire functions,j = 1, 2, ...m and g = f1 o f2 o... o fm(z). We study the properites of Fatou components of g. A sufficient condition is given for which the connected components of Fatou set of g(z) are bounded. Also we prove that there is a subsequence of {g~} tends to ∞ in any wandering domains of g under some conditions.
出处
《数学研究》
CSCD
2011年第2期170-175,共6页
Journal of Mathematical Study
关键词
超越整函数
FATOU集
连通分支
游荡域
有界.
Transcendental entire functions
Fatou set
Connected components
Wandering domains
Bounded.