期刊文献+

基于支持向量机的电力市场价格预测中的核函数比较 被引量:2

A Comparison of Kernel Functions of Support Vector Machine for Electricity Price Forecasting
下载PDF
导出
摘要 电价预测是电力市场中的一个重要研究课题。支持向量机(SVM)已被广泛应用于这一领域。然而,电力市场电价的高波动性和随机性等特征给支持向量机核函数的选择带来了挑战。本文在选择不同核函数的基础上,分别建立两个电力价格预测模型,并用真实电力市场价格数据对两个模型进行验证。实验结果表明,与其他支持向量机预测研究相比,本文精心选择的SVM核函数对短期电价预测具有较好性能。 Accurate forecasting of spot price is an essential issue in electricity market. Support Vector machines (SVM) has been widely adopted to deal with this issue. However, the high fluctuation and randomness features of electricity market present a number of challenges for the choosing of kernel functions for SVM. In this paper, by using different kernel functions, two SVM models for electricity price forecast have been developed. Case studies, adopting data from an actual electricity market, have been performed and the results are presented. In addition, comparisons with results from other SVM forecasting studies have shown that the performance of SVM models could be improved by choosing a tailored kernel function.
出处 《计算技术与自动化》 2011年第2期30-33,共4页 Computing Technology and Automation
关键词 电力市场 预测 支持向量机 核函数 power market forecasting SVM kernel functions
  • 相关文献

参考文献11

  • 1张显,王锡凡.短期电价预测综述[J].电力系统自动化,2006,30(3):92-101. 被引量:76
  • 2陈思杰,周浩.电力市场电价预测方法综述[J].继电器,2006,34(11):54-60. 被引量:30
  • 3XINDONG WU, et al. Top 10 algorithms in data mining [J]. Knowledge Inlormatlon System,2007, 14(1), 1-37.
  • 4TOM DOWNS, J'IANXIONG WANG. Improving Support Vector Solutions by Selecting a Sequence of Training Subsets [C]. Proe. of IDEAL, 2004. 696-701.
  • 5吴玮,周建中,杨俊杰,莫莉.基于混合贝叶斯SVM的电价分类与预测[J].计算机工程,2007,33(18):12-14. 被引量:4
  • 6cORINN~. CORTES, VLADIMIR VAPNIK. Support-Vec- tor Networks[J]. Machine Learning,1995,20(3) ,273--297.
  • 7THORSTEN JOACHIMS. Making Large- Scale SVM Learning Practical [R], Universitat Dortmund, LS VIII- Report, 1998.
  • 8Ivdn Mejia-Guevara and Angel Kuri-Morales 2007. "MP-pol- ynomial kernel for training support vector maehines"[C]. In Proceedings of CIARP'07, Luis Rueda, Domingo Mery, and J'osef Kittler (Eds.). Springer-- Verlag, Berlin, Heidelberg, 584-593.
  • 9张芬,陶亮,孙艳.基于混合核函数的SVM及其应用[J].计算机技术与发展,2006,16(2):176-178. 被引量:23
  • 10r. JIANXIONG WANG,TOM DOWNS. Tuning Pattern Clas- sifier Parameters Using A Genetic Algorithm With An Appli- cation In Mobile Robotics. Ins Proc. of CEC'03, 2003.

二级参考文献118

共引文献137

同被引文献30

  • 1Vapnik V N.Statistical learning theory[M].New York:JohnWiley and Sons,1998.
  • 2Smola A J,Scholkopf B.A tutorial on Support VectorRegression[J].Statistics and Computing,2004,14:199-222.
  • 3Burges C J C.A tutorial on Support Vector Machines forpattern recognition[J].Knowledge Discovery and Data Mining,1998,2(2):121-167.
  • 4Cortes C,Vapnic V.Support vector networks[J].MachineLearning,1995,20(3):273-297.
  • 5Mukherjee S,Osuna E,Girosi F.Nonlinear prediction ofchaotic time series using a support vector machine[C].Proceedings of the IEEE Workshop on Neural Networksfor Singnal Processing,1997:511-519.
  • 6Drucker H,Burges C J C,Kaufman L,et al.Support vectorregression machines[J].Advances in Neural InformationProcessing Systems,1997,9:155-161.
  • 7Vazquez E,Walter E.Multi-output Support Vector Regression[C].13th IFAC Symposium on System Identification,2003:1820-1825.
  • 8Hu G H,Ling D.Multi-Output Support Vector machineregression and its online learning[C].Proceedings of 2008International Conference on Computer Science and SoftwareEngineering.[S.l.]:IEEE Press,2008.
  • 9Michel P,Kaliouby R E.Real Time facial expression recognitionin video using Support Vector Machines[C].Proceedingsof the Fifth Internation Conference on MultimodalInterfaces(ICMI),2003,11:258-264.
  • 10Buciu I,Kotropoulos C,Pitas I.ICA and Gabor representationfor facial expression recognition[C].Int Conf onImage Processing,2003:855-858.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部