期刊文献+

Banach空间非线性弹性梁方程的唯一迭代解

Existence and Uniqueness of the Solutions of Equation of Nonlinear Elastic Beam Equations in Banach Space
下载PDF
导出
摘要 利用新的再生锥条件下的不动点定理对Banach空间中一类非线性弹性梁方程做了研究,证明了所述方程解的存在唯一性,并给出了迭代式,最后给出一个例子说明主要结果。 By using a new fixed-point theorem which is on the condition of generating cone,the iterative unique solution and its iterative approximation for a class of equation of nonlinear elastic beam equations in Banach spaces are established,and an example is given to illustrate the main result.
作者 张培国
机构地区 菏泽学院
出处 《廊坊师范学院学报(自然科学版)》 2011年第3期14-16,共3页 Journal of Langfang Normal University(Natural Science Edition)
基金 菏泽学院科研基金资助项目(XY10SX01)
关键词 BANACH空间 弹性梁方程 迭代解 Banach space Elastic beam equation Iterative solution
  • 相关文献

参考文献9

  • 1Gupta C P. Existence and Uniqueness Theorems for the bending of an Elastic Beam Equation [ J ]. Applicable Anal. , 1988,26(4) :289 - 304.
  • 2Ruyun M, Ling X. Existence of positive solutions of a non- linear fourth-order boundary value problem [ J ]. Applied Mathematics Letters, 2010, (23)5 : 537 - 543.
  • 3Qingliu Y. Local existence of multiple positive solutions to a singular cantilever beam equation [ J]. Journal of Math-ematical Analysis and Apphcations, 2010, 363 ( 1 ) : 138 - 154.
  • 4Li F. Sign-changing solutions on a kind of fourth-order Neumann boundary value problem [ J ]. J. Math. Anal. Ap- pl. ,2008,344(1) :417 - 428.
  • 5Lin X,Jiang D, Li X. Existence and uniqueness of solutions for singular fourth-order boundary value problems [ J ]. J. Comput. Appl. Math. ,2006,196(1) : 155 - 161.
  • 6Agarwal R P, O' Regan D, Lakshmikantham V. Singular (p, n-p) focal and (n, p) higher order boundary value problem [ J ]. Nonhnear Anal., 2000,42 (2) : 215 - 228.
  • 7Guo D, Lakshmikantham V, Liu X. Nonlinear Integral Equations in Abstract Spaces[ M ]. Kluwer Academic Pub- hshers, Dordrecht, 1996.
  • 8郭大钧.非线性分析中的半序方法[M].济南:山东科技出版社,2000..
  • 9张培国,刘立山.序Banach空间非混合单调二元算子不动点的存在唯一性及应用[J].数学学报(中文版),2010,53(1):55-60. 被引量:7

二级参考文献3

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部