期刊文献+

基于复杂网络理论的网络容量估算 被引量:2

Network capacity based on complex network theory
下载PDF
导出
摘要 基于复杂网络理论统计参数的介数概念,给出了网络在发生随机故障后,网络中边的最大介数估算公式.边的介数是指通过该边的最短路径数量,网络中拥有最大介数的边在通信过程中最容易出现拥塞,提出估计公式的意义在于:能够更好的估算在各种情形下网络所能容纳的通信连接的数量,即可以更准确的估计网络容量.实验表明,所提出的估计公式具有合理性,为边的介数估算提供了一种新的方法,也可以为流量工程的设计及网络规划等提供重要依据. Based on the complex network theory,we present formulae for estimating the maximum of betweenness centrality of edge in a network after the random breakdowns happen.Betweenness centrality of edge is defined as the number of shortest paths traveling through an edge given a communication protocol.The edge possessing the max betweenness tends to be congested in communication process,so providing more precise estimation of edge betweenness can give more exact estimation to the capacity of distributing traffic to a network.Finally,We confirm the formula by simulation analysis.Little attention has been paid to the effect of random breakdown on the edge betweenness,so the proposed formula provides a new solution to estimating edge betweenness and also it can be useful for traffic engineering and network planning.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2011年第3期123-127,131,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家"863"计划项目资助(2007AA01Z203 2007CB307101) 国家自然科学基金项目资助(60772039) 北京交通大学科技发基金项目资助(2006XZ002)
关键词 复杂网络 介数 随机故障 平均路径长度 complex network betweenness centrality random failure average path length
  • 相关文献

参考文献8

  • 1Albert R, Barabdsi A L. Statistical mechanics of complexnetworks[J ]. Review of Modem Physics, 2002, 74 ( 1 ) : 47-97.
  • 2Erd6s P, R6nyi A. On the evolution of random graphs[Jl. Publication of Mathematical Institute of Hungarian Academy of Science, 1960, 5: 17-60.
  • 3Barabdsi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286(5439): 509-512.
  • 4Duch J, Arenas A. Effect of random failures on traffic in complex networks[C]//Proceedings-SPIE the International Society for Optical Engineering, 2007,6601 : 66010.
  • 5He Shan, Li Sheng, Ma Hongru. Effect of edge removal on topological and functional robustness of complex networks[J ]. Physica A, 2009,388( 11 ) : 2243 - 2253.
  • 6Cormen T H, Leiserson C E, Rivest R L, et at. Introduction to Algorithms[ M]. 2nd ed. The MIT Prexs, 2001: 386 - 388.
  • 7(3ohen R, Havlin S. Scale-free networks are uhrasmall[J ]. Physical Review Letters, 2003, 90(5):058701.
  • 8Gleich D F. MatlabBGL[EB/OL]. (2008-10-21). http: // www. mathworks, com/matlabcentral/fileexchange/ 10922, 2008.

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部