期刊文献+

二次半定规划的原始对偶预估校正内点算法 被引量:1

Primal-dual predictor-corrector interior point algorithm for quadratic semidefinite programming
下载PDF
导出
摘要 将半定规划(Semidefinite Programming,SDP)的内点算法推广到二次半定规划(QuadraticSemidefinite Programming,QSDP),重点讨论了AHO搜索方向的产生方法.首先利用Wolfe对偶理论推导得到了求解二次半定规划的非线性方程组,利用牛顿法求解该方程组,得到了求解QSDP的内点算法的AHO搜索方向,证明了该搜索方向的存在唯一性,最后给出了求解二次半定规划的预估校正内点算法的具体步骤,并对基于不同搜索方向的内点算法进行了数值实验,结果表明基于NT方向的内点算法最为稳健. This paper extends the interior point algorithm for solving Semidefinite Programming(SDP) to Quadratic Semidefinite Programming(QSDP) and especially discusses the generation of AHO search direction.Firstly,we derive the nonlinear equations for solving QSDP using Wolfe's dual theorem.The AHO search direction is got by applying Newton's method to the equations.Then we prove the existence and uniqueness of the search direction,and give the detaied steps of predictor-corrector interior-point algorithm.At last,this paper provides a numerical comparison of the algoritms using three different search directions and suggests the algorithm using NT direction is the most robust.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2011年第3期136-141,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(60772036 61071142) 教育部博士点基金项目资助(20070004002) 北京市教委面上项目资助(201110772019) 北京信息科技大学校科研基金资助项目
关键词 半定规划 二次半定规划 内点算法 搜索方向 牛顿法 semidefinite programming quadratic semidefinite programming interior point algorithm search direction Newton's method
  • 相关文献

参考文献14

  • 1Alizadeh F, Haeberly J P, Overton M. Primal dual interior point methods for semidefinite programrning[R]. Technical Report 659, Cumputer Science. New York: New York University, 1994.
  • 2Kojima M, Shindoh S, Hara S. Interior point methods for the monotone semidefinite complementarity promble in symmtric matrices [J ]. SIAM J. Optim. , 1997, 7:86-125.
  • 3Helmberg C, Rendl F, Vanderbei R J, et al. An interior point method for semidefinite programming[J ]. SIAM J. Optim. , 1996,6 : 342-361.
  • 4Monteiro R D C. Primal dual path following algorithms for semidefinite programming[J]. SIAM J. Optim. , 1997,7: 663-678.
  • 5Nesterov Y E,Todd M. Primal dual interior point methods for self scaled cones[J]. SIAM J. Optim. , 1998,8 : 324-364.
  • 6Nesterov Y E, Todd M. Self-scaled barriers and interior point methods for convex programming[J]. Math. Oper. Res. , 1997,22:1-42.
  • 7Xu Fengmin, Xu chengxian. Primal-dual algorithm for quadratic semidefinite programming[J ]. Chinese .lournal of Engineering Mathematics,2006,23 (4) :590-598.
  • 8康志林,张圣贵.一类二次半定规划问题及其内点算法[J].福建师范大学学报(自然科学版),2008,24(1):1-6. 被引量:4
  • 9黄静静,王爱文.二次半定规划的原始对偶内点算法的H..K..M搜索方向的存在唯一性[J].数学的实践与认识,2008,38(18):233-238. 被引量:4
  • 10关秀翠,刁在筠.二次半定规划问题及其投影收缩算法[J].高等学校计算数学学报,2002,24(2):97-108. 被引量:10

二级参考文献14

  • 1何炳生.论求解单调变分不等式的一些投影收缩算法[J].计算数学,1996,18(1):54-60. 被引量:20
  • 2徐凤敏,徐成贤.求解二次半定规划的原对偶内点算法(英文)[J].工程数学学报,2006,23(4):590-598. 被引量:4
  • 3Alizadeh F, Haeberly J P, Overton M. Primal Dual Interior Point Methods for Semidefinite Programming[M]. Technical Report 659, Cumputer Science, New York University, New York, NY,1994.
  • 4Kojima M, Shindoh S, Hara S. Interior point methods for the monotone semidefinite complementarity promble in symmtric matriees[J]. SIAM J Optim,1997,7:86-125.
  • 5Helmberg C, Rendl F, Vanderbei R J, Wolkowicz H. An interior point method for semidefinite programming[J]. SIAM J Optim,1996,6:342-361.
  • 6Monteiro R D C. Primal dual path following algorithms for semidefinite programming[J]. SIAM J Optim, 1997,7: 663-678.
  • 7Nesterov Y E, Todd M. Primal dual interior point methods for self-scaled cones [J]. SIAM J Optim, 1998,8 : 324- 364.
  • 8Nesterov Y E, Todd M. Self-scaled barriers and interior point methods for convex programming[J]. Math Oper Res,1997,22:1-42.
  • 9Todd M J, Toh K C, Tutuncu R H. On the nesterov-todd direction in SDP[J]. SIAM J Optimization,1998,8(3) : 769-796.
  • 10Nesterov Y, Nemirovskii A S. Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms[M]. SIAM Philadelphia PA,1994.

共引文献13

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部