期刊文献+

Ising动力系统模拟收益率的多重分形分析 被引量:4

Simulation and multifractal analysis by stochastic Ising dynamic systems for returns
下载PDF
导出
摘要 应用Ising模型和平均场理论构造符合股市收益率的动力系统,借助于计算机软件Mat-lab,利用蒙特卡洛模拟方法,通过调整参数模拟得出动力系统的收益率序列.分析发现:Ising动力系统构造的收益率同证券市场股票指数波动率一样具有厚尾等统计特征.对模拟收益率原序列和混洗后的序列进行多重分形分析,得出了模拟收益率序列存在分布多重分形和相关性多重分形的结论. We considered a logarithmic returns process based on Ising model and mean field approximation.By adjusting parameters,we get the simulated returns of the dynamic systems by using mathematical soft Matlab and Monte Carlo simulatiomarket have similar statistical properties,such as fat-tail behavior.By comparing the multifractal detrended fluctuation analysis(MFDFA) results for original series with those for shuffled series,we can make a conclusion that multifractality of the returns both due to a broad probability density function and long-range correlations.
作者 方雯 王军
出处 《北京交通大学学报》 CAS CSCD 北大核心 2011年第3期162-166,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(70771006 10971010) 中央高校基本科研业务费专项资金资助(2011YJS077)
关键词 Ising动力系统 蒙特卡洛模拟 正态分布检验 多重分形 Ising dynamic systems Monte Carlo simulation normal distribution test multifractal behavior
  • 相关文献

参考文献9

  • 1Chen M F. From Markov chains to non-equilibrium particle systems[M]. USA NJ: World Scientific, River Edge, 1992 : 381 - 405.
  • 2Wang J. Estimates of correlations in two-dimensional Ising model[J]. Physica A, 2009, 388(5) : 565 - 573.
  • 3Wang J. Supercritical Ising model on the lattice fractal: Sierpinski carpet[J]. Modem Physics Letters B, 2006, 20(8):409- 414.
  • 4Bartolozzi M, Thomas A W. Stochastic cellular automata model for stock market dynamics[J ]. Physical Review E, 2004, 69(4) :046112.
  • 5Krawiecki A, Holyst J A, Helbing D. Volatility clustering and scaling for financial time series due to attractor bubbling[J ]. Physical Review Letters, 2002, 89 : 158701.
  • 6Gopikrishnan P, Plerou V, Liu Y, et al. Scaling and correlation in financial time series[J ]. Physica A, 2000, 287 : 362 - 373.
  • 7Richard S Ellis. Entropy, Large Deviations, and Statistical Mechanics[ M]. Beijing: World Publishing Corporation, 1992:135 - 161.
  • 8Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87- 114.
  • 9Mandelbrot B B. Fractal and scaling in finance: Discontinuity, concentration, risk[M]. New York: Springer Verlag, 1997:79- 104.

同被引文献39

  • 1Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-654.
  • 2Makowiec D,Gnacinski P,Miklaszewski W.Amplified imitation in percolation model of stock market[J].Physica A:Statistical Mechanics and its Applications,2004,331(1):269-278.
  • 3Tanaka H.A percolation rnodel of stock price fluctuations[J].Mathematical Economics,2002,1264:203-218.
  • 4Zhang J H,Wang J.Modeling and simulation of the market fluctuations by the finite range contact systems[J].Simulation Modelling Practice and Theory,2010,18 (6):910-925.
  • 5Iori G.A threshold model for stock return volatility and.trading volume[J].International Journal of Theoretical and Applied Finance,2000,3(3):467-472.
  • 6Higuchi Y,Murai J,Wang J.The Dobrushin-Hryniv theory for the two-dimensional lattice Widom-Rowlinson model[J].Advanced Studies in Pure Mathematics,2004,39:233-281.
  • 7Liggett T.Interacting particle systems[M].New York:Springer-Verlag,1985:179-224.
  • 8Wang J.The estimates of correlations in two-dimensional Ising model[J].Physica A:Statistical Mechanics and its Applications,2009,388(5):565-573.
  • 9Wang J.Supercritical Ising model on the lattice fractal-the Sierpinski carpet[J].Modem Physics Letters B,2006,20(8):409-414.
  • 10Lamberton D,Lapeyre B.Introduction to Stochastic Calculus Applied to Finance[M].London:Chapman and Hall,2000:63-118.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部