期刊文献+

改进适应度函数的阵列综合粒子群算法 被引量:5

A PSO Algorithm for Improving Fitness Function in Array Synthesis
下载PDF
导出
摘要 针对标准粒子群算法在阵列综合应用中收敛所需的迭代次数较多、收敛速度较慢等问题,提出了一种基于改进适应度函数计算的粒子群改进算法。根据阵列在采用标准粒子群算法时的收敛趋势,提出在适应度函数计算中,对适当角度范围内的适应度函数进行加权计算,使影响收敛速度因素的计算权值得到提高、并得到优先处理,从而降低平均计算时间。通过对线阵天线的仿真实验,结果表明该方法效果明显,可以在满足方向图要求的前提下,大大减少收敛所需迭代的次数,加快收敛速度。 An improved particle swarm optimization algorithm based on improved fitness function calculation is proposed to solve the problems of overmuch iterativeness and slow evolving speed of convergence in array synthesis.Based on the convergence trend,the proposed method conducts weighted calculation in an appropriate range in the fitness function calculation,so it can deal with the facts which affect the speed of convergence.The simulation experiment of a linear array antennas indicates that the effect is distinct.In the prerequisite of pattern request being satisfied,it can decrease the number of iterativeness and increase the speed of convergence greatly.
出处 《雷达科学与技术》 2011年第3期281-285,共5页 Radar Science and Technology
关键词 粒子群优化(PSO) 适应度函数 方向图综合 线阵天线 particle swarm optimization(PSO) fitness function pattern synthesis linear array antenna
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimiza tion[C] // Proceedings of IEEE International Confer ence on Neural Networks, Perth, WA, Australia [s. n. ], 1995:1942-1948.
  • 2Boeringer D W, Werner D H. A Comparison of Particle Swarm Optimization and Genetic Algorithms for a Phased Array Synthesis Problem[C] // Antennas and Propagation Society international Symposium, [s. 1. ]: IEEE, 2003 : 181-184.
  • 3Eberhart R C, Shi Yuhui. Comparison Between Genetic Algorithms and Particle Swarm Optimization[C] //Annual Conference on Evolutionary Programming, San Diego:[s. n. ], 1998:611-616.
  • 4齐美清,汪伟,金谋平.基于粒子群算法的天线阵方向图优化[J].雷达科学与技术,2008,6(3):231-234. 被引量:10
  • 5Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization [C]//Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC: [s. n.], 1999: 1951-1957.
  • 6高波,金荣洪,耿军平.基于一种新的粒子群算法的天线方向图综合技术[J].电子与信息学报,2007,29(12):3015-3019. 被引量:14
  • 7Perez Lepez J R, Basterrechea Verdeja J. Synthesis of Linear Arrays Using Particle Swarm Optimisation[C] //First European Conference on Antennas and Propagation, Nice:[s. n. ], 2006:1-6.
  • 8Li W T, Shi X W, Hei Y Q. An Improved Particle Swarm Optimization Algorithm for Pattern Synthesis of Phased Arrays [C] // Progress in Eleetromagnetics Research, [s. 1. ] : Es. n. 1, 2008 : 319-332.

二级参考文献15

  • 1刘自发,葛少云,余贻鑫.一种混合智能算法在配电网络重构中的应用[J].中国电机工程学报,2005,25(15):73-78. 被引量:80
  • 2齐美清,金谋平,汪伟.粒子群优化算法在宽带耦合器设计中的应用[J].现代雷达,2007,29(6):64-67. 被引量:1
  • 3林欢欢,王英民,朱婷婷.利用模拟退火算法设计方向图的原理和方法[J].计算机仿真,2007,24(7):176-178. 被引量:1
  • 4李宁涛,陶海红,廖桂生.样本含有期望信号时的正交投影波束形成算法[J].雷达科学与技术,2007,5(4):246-249. 被引量:4
  • 5Kennedy J and Eberhart R C. Particle swarm optimization. Proc. IEEE International Conference on Neural Networks, IEEE Service Center, 1995, Ⅳ: 1942-1948.
  • 6Shi Y and Eberhart R C. A modified particle swarm optimizer [C]. Proceeding of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, N J. 1998: 69-73.
  • 7Eberhart R C and Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of the 2000 Congress on Evolutionary Computation, La JoUa, CA ,Vol 1, 2000: 84-88.
  • 8Eberhart R C and Shi Y. Fuzzy adaptive particle swarm optimization. Proceedings of the Congress on Evolutionary Computation, Seoul, Volume 1, 2001: 101-106.
  • 9Huang T and Mohan A S. A hybrid boundary condition for robust particle swarm optimization[J]. Antennas and Wireless Propagation Letters, 4, 2005, 4: 112-117.
  • 10Ciuprina G, Ioan D, and Munteanu I, Use of intelligent-particle swarm optimization in electromagnetics. [J]. IEEE Trans. on Magnetics, 2004, 38(2): 1037-1040.

共引文献22

同被引文献29

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部