期刊文献+

基于神经网络的镁合金微弧氧化膜厚动态监测 被引量:3

Dynamic Monitoring of Film Thickness of Micro-arc Oxidation on Magnesium Alloys Based on Neural Network
下载PDF
导出
摘要 选择三层结构的BP神经网络,建立镁合金微弧氧化膜厚的映射模型。基于采用带放电回路的脉冲电源进行的镁合金微弧氧化的实验结果,讨论了微弧氧化的几个主要参数对膜层生长的影响关系,从而确定了神经网络的输入参数。通过工艺试验构造了训练与测试样本集。训练得到的BP神经网络的测试结果表明,利用神经网络的方法来实现对膜厚的动态监测是可行的。 The mapping model of film thickness of micro-arc oxidation(MAO) on magnesium alloys is built on BP neural network with three layer structure.Based on experimental results of magnesium alloy MAO under the pulse power supply with discharge loop,the affecting relations between film thickness and several main parameters of MAO were put forward,thus causing the input parameters of neural network to be determined.Then the training and testing samples were constructed through technical experiment.Finally,the testing results of BP neural network which was got through training proved that the method of dynamic monitoring of film thickness of MAO based on neural network was feasible.
出处 《铸造技术》 CAS 北大核心 2011年第6期845-848,共4页 Foundry Technology
基金 甘肃省科技重大专项资助项目(0702GKDA024)
关键词 镁合金 微弧氧化 膜层厚度 神经网络 Magnesium alloys Micro-arc oxidation Film thickness Neural network
  • 相关文献

参考文献7

二级参考文献58

  • 1方建安,邵世煌.采用遗传算法学习的神经网络控制器[J].控制与决策,1993,8(3):208-212. 被引量:28
  • 2[1]Lehnert W, Chabbi L. Besonderheitenb eim Umformenvon Magnesium-werkstoffen[A]. Lecture, MEFORM 99[C]. Freiberg, 24.Und 25.Marz, 1999.
  • 3[2]Maker G L, Kruger J. Corossion of magnesium[J]. Inter Materials Rev, 1993, 38(3): 1386-142.
  • 4[5]Edgar R L. Magnesium supply and demand[A]. 53th Annual World Magnesium Conference[C]. 1998, IMA, Rom, 1999. 1-6.
  • 5[6]Ficara P, Chin E, Walker T, et al. A novel commercial process for the primary production of magnesium[J]. CIM Bulletin, 1984 , 4: 75-80.
  • 6[8]Dittrich K H, Krysmann W, Kurze P, et al. Structure and properties of ANOF layers[J]. Cryst Res & Technol, 1984 , 19(1): 93-99.
  • 7[9]Van T B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition[J]. Am Ceram Soc Bull, 1977, 56(6): 563-566.
  • 8[10]Writz G P, Brown S D, Kriven W M. Ceramic coatings by anodic spark deposition[J]. Mater Manu Process, 1991, 6(10): 87-115.
  • 9[11]Krysmann W, Kurze P, Dittrick K H. Process characteristics and parameters of anodic oxidation by spark discharge(ANOF)[J]. Crys Res Technol, 1984, 19(7): 973-978.
  • 10[12]Kurze P, Krysmann W, Scheider H G. Application fields of ANOF layer and composities[J]. Cryst Res Technol, 1986, 21(12): 1603-1609.

共引文献295

同被引文献23

  • 1邓春龙,李文军,孙明先.BP神经网络在碳钢、低合金钢海水腐蚀中的应用[J].腐蚀科学与防护技术,2006,18(1):54-57. 被引量:21
  • 2王涛,周明安,张庆功.基于遗传神经网络的压铸机座板结构优化设计[J].铸造技术,2007,28(1):82-83. 被引量:5
  • 3周开利,康耀红.神经网络模型及其MATLAB仿真程穿设计[M].北京:清华大学出版社,2005:69-100.
  • 4Zahran O, Kasban H, E1-Kordy M. Automatic weld defect identification from radiographic images [J]. NDT and E International, 2013, 57(23): 26-35.
  • 5Wang Yong, Guo Hui. Weld defect detection of X-ray images based on support vector machine [J]. IETE Technical Review, 2014, 31(2): 137-142.
  • 6Wang Xin. Recognition of Welding Defects in Radiographic Images by Using Support Vector Machine Classifier [J]. Research Journal of Applied Sciences-Engineering and Technology, 2010, 2(3): 295-303.
  • 7Zahran O, Kasban H, E1-Samie F E A. Power density spectrum for the identification of residence time distribution signals [J]. Applied Radiation and Isotopes, 2012, 70(11): 2638-2645.
  • 8Kasban H, Zahran O, Arafa H. Welding defect detection from radiographic image using cepstral approach [J]. Nondestructive Testing and Evaluation: An International Journal, 2011, 44 (2): 226-231.
  • 9S hao Jiaxin, Du Dong, Chang Baohua. Automatic weld defect detection based on potentialdefect tracking in real-time radiographic image sequence [J]. NDT&EInternational, 2012, 22(3): 14-21.
  • 10Frosio I, Borghese N A. Statistical based impulsive noise removal in digital radiography [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 3-16.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部