期刊文献+

基为64的可扩展模乘法器设计 被引量:1

Design of a scalable radix-64 montgomery multiplier
下载PDF
导出
摘要 针对Tenca提出的基为8的Montgomery模乘器,采用基为64的改进设计,使其在不同运算长度下,运算速度比Tenca的设计平均提高了48%。同时对硬件设计进行了优化,缩短了关键路径的延迟。该设计具有良好的可扩展性,能够支持任意位数的模乘运算,可广泛应用于不同性能和面积需求的公钥密码协处理器设计。 An improved version of Montgomery multiplier was proposed basing the Tenca's word based radix-8 Montgomery multiplier. Radix-64 was used for our design. The performance was improved up to 48% comparing to the Tenca's design. Furthermore, the critical path was shortened by adjusting the data-path. The proposed multiplier is also able to work with any precision of the input operands and can suitable to various public key cryptosystem.
出处 《电子技术应用》 北大核心 2011年第7期153-155,共3页 Application of Electronic Technique
基金 国家高技术研究发展(863)计划资助项目-面向密码运算的动态可重构处理器体系结构与关键实现技术(2008AA01Z103)
关键词 Montgomery乘法器 高基 可扩展 montgomery multiplier high-radix scalable
  • 相关文献

参考文献4

二级参考文献14

  • 1Rivest R L, Shamir A, Adelman L. A method for obtaining digital signatures and public-key cryptosystems [J]. Communications of the ACM, 1978, 21: 120 - 126.
  • 2Koblitz N. Elliptic curve cryptosystems [J]. Mathematics of Computation, 1987, 48:203 - 209.
  • 3Montgomery R L. Modular multiplication without trial division [J]. Mathematics of Computation, 1985, 44: 519- 521.
  • 4Rubinfeld L. A proof of the modified Booth's algorithm for multiplication [J]. IEEE Transuctions on Computers, 1975: 1014 - 1015.
  • 5Wallace C S. A suggestion for parallel multipliers [J]. IEEE Transactions on Electronics Computers, 1964, EC-13:14 - 17.
  • 6Seidel P M, McFearin L, Matula D W. Binary multiplication radix-32 and radix-256 [C] // Proceeding of 15th IEEE International Symposium on Computer Arithmetic, Colorado, USA; IEEE Press, 2001:23-32.
  • 7A1-Khaleel O, Papachristou C, Wolff F, et al. A large scale adaptable multiplier for cryptographic applications [C] // First NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, Turkey: IEEE Press, 2006 : 477 - 484.
  • 8Rivest R L, Shamir A, Adleman L A. Method for Obtaining Digital Signatures and Public-key Cryptosystems[J]. Communications of the ACM, 1978, 21(2):120-126.
  • 9Montgomery P L. Modular Multiplication Without Trial Division[J]. Mathematics of Computation, 1985,44(170): 519-521.
  • 10Tenca A F, Koc K.A Scalable Architecture for Montgomery Multiplication[C]//Proc.of International Conference on Cryptographic Hardware and Embedded Systems.1999,94-108.

共引文献3

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部