期刊文献+

基于实时观测数据的大气密度模式修正 被引量:14

Atmospheric Density Calibration Using the Real-time Satellite Observation
下载PDF
导出
摘要 针对国际大气密度模式NRLMSISE-00,以中国神舟飞船探测数据为基础,提出一种基于实时大气密度观测数据的模式修正方法.通过计算分析模式计算结果与探测数据的误差分布特征,针对地磁相对平静期(Ap≤30)模式计算的误差特点,建立了一种平均误差修正方法,即认为在相对平静期,在相同纬度和地方时,模式误差基本相同,某一时刻模式预测误差可以近似用与其相同纬度和地方时的平均误差来替代,从而对模式预测结果进行修正.以神舟4号探测数据为基础,通过对模式预测结果采用两种方式进行修正,可以看到模式误差得到了一定的改善.采用误差库累积准实时修正,修正后的误差由原来的20%降至6%;采用误差库5天滑动预报修正后,模式提前1,2,3天的预测误差由原来的20%分别降至7.8%,9.4%和10.5% For low Earth satellites, thermospheric density models are widely used in orbit determination and prediction. However, typical models often show density errors of 15%-30% under normal condition and the errors may be much greater during unusually solar and geomagnetic period. Density errors can be translated into orbit errors and effect mission plan, re-entry operations and precise orbit determination. In this paper, on the basis of detected data of Shenzhou, a kind of model calibration is expected to be developed on real-time detected data. By analyzing and comparing the character of density error for the national atmosphere model NRLMSISE-00, a kind of average calibration method is developed for relative quiet geomagnetic field (Ap ≤ 30). During the quiet geo- magnetic field, the errors of model at the same local time and latitude are considered approximately identical, so the error may be substituted by average error at the same station. The results of model are tested based on Shenzhou 4 data by two means and both are improved in accuracy. The errors of 20% decreased to 6% by real-time error calibration. The errors of one day in advance decreased to 7.8%, two days in advance decreased to 9.4% and three days in advance decreased to 10.5%.
出处 《空间科学学报》 CAS CSCD 北大核心 2011年第4期459-466,共8页 Chinese Journal of Space Science
基金 载人航天与深空探测飞行力学实验室开放基金项目资助(SFDLXZ201005)
关键词 神舟探测 大气密度 模式修正 Shenzhou detection, Atmospheric density, Model calibration
  • 相关文献

参考文献14

  • 1Kallmann-Bijl H, Boyd R L F, Lagow H, Poloskov S M, Priester W. Cira 1961: COSPAR International Reference Atmosphere 1961 [R]. Amsterdam: North-Holland Publi-shing Company, 1961.
  • 2Jacchia L G. New static models of the thermosphere and exosphere with empirical temperature models [R]. Techni- cal Report 313, Smithsonian Astrophysical Observatory, 1970.
  • 3Berger C, Biancale R Ill M, Barlier F. Improvement of the empirical thermosphere model DTM: DTM-94 - acomparative review of various temporal variations and prospects in space geodesy applications [J]. J. Geod., 1998, T2(3):161-178.
  • 4Bruinsma S, Thuillier G, Barlier F. The DTM-2000 em- pirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and proper- ties [J]. J. Atmos. Solar-Terr. Phys., 2003, 65:1053-1070.
  • 5Hedin A. MSIS-86 thermospheric model [J]. J. Geophys. Res., 1987, 92(A5):4649-4662.
  • 6Hedin A E. Extension of the MSIS thermospheric model into the middle and lower atmosphere [J]. J. Geophys. Res., 1991, 96(A2):1159-1172.
  • 7Picone J, Hedin A, Drob D, Aikin A. NRLMSISE-00 empirical model of the atmosphere: statistical compar- isons and scientific issues [J]. J. Geophys. Res., 2002, 107(A12):SIA15.1-SIA15.16.
  • 8Marcos F, Bass J, Baker C, Boner W. Neutral density models for aerospace applications [R]//32nd Aerospace Sciences Meeting and Exhibit, January 10-13, 1994/Reno, NY, 1994.
  • 9Rhoden E, Forbes J, Marcos F. The influence of geomag- netic and solar variabilities on lower thermosphere den- sity[J]. J. Atmos. Solar-Tort. Phys., 2000, 62:999-1013.
  • 10Storz M F, Bowman B R. High accuracy satellite drag model [J]. Adv. Space Res., 2005, 36:2497-2505.

同被引文献74

  • 1Picone J M, Hedin A E, Drob D P, Aikin A t3. NRLMSISE-00 empirical model of the atmosphere: Sta- tistical comparisons and scientific issues[J]. J. Geo- phys. Res.: Space Phys., 2002. 107(A12), 1468, doi: 10.1029/2002JA009430.
  • 2Lei J, Matsuo T, Dou X, Sutton E, Luan X. Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data [J]. J. Geophys. Res., 2012, 117, A01310, doi:10.1029/2011JA017324.
  • 3Guo J, Wan W, Forbes J M, Sutton E, Nerem R S, Bru- insma S. Interannual and latitudinal variability of the thermosphere density annual harmonics [J]. J. Geophys. Res., 2008, 113, A08301, doi:10.1029/2008JA013056.
  • 4Qian L, Solomon S. Thermospheric density: An overview of temporal and spatial variations [J]. Space Sci. Rev., 2012, 168(1):147-173.
  • 5Liu H, Liihr H. Strong disturbance of the upper thermo- spheric density due to magnetic storms: CHAMP obser- vations [J]. J. Geophys. Res., 2005, 110, A09S29, doi: 10.1029/2004JA010908.
  • 6Guo J, Wan W, Forbes J M, et al. Effects of solar vari- ability on thermosphere density from CHAMP accelerom- eter data[J]. J. Geophys. Res., 2007, 112, A10308, doi:10.1029/2007JA012409.
  • 7Bruinsma S, Tamagnan D, Biancale R. Atmospheric den- sities derived from CHAMP/STAR accelerometer obser- vations [J]. Planet. Space Sci., 2004, 52(4):297-312.
  • 8Reigber C, Lfihr H, Schwintzer P. CHAMP mission sta- tus [J]. Adv. Space Res., 2002, 30(2):129-134.
  • 9Tapley B D, Bettadpur S, Watkins M, Reigber C. The gravity recovery and climate experiment: Mission overview and early results [J]. Geophys. Res. Lett., 2004, 31, L09607, doi: 10.1029/2004GL019920.
  • 10Liu H, Yamamoto M, Liihr H. Wave-4 pattern of the equa- torial mass density anomaly: A thermospheric signature of tropical deep convection [J]. Geophys. Res. Left., 2009, 36, L18104, doi:10.1029/2009GL039865.

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部