期刊文献+

Copula函数的加权平均距离检验方法 被引量:1

The Test of Copula Function Based on the Weighted Average Distance
原文传递
导出
摘要 针对无法从定性的角度选择最优Copula函数,本文从定量的角度给出Copula函数的一种加权平均距离检验方法,并给出该检验方法的拒绝域与检验p值,最后证明了此检验方法具有相合性,并给出检验统计量的渐近分布,从而说明此方法可以用于最优Copula函数的选择。 In this paper, based on the weighted average distance, the test of Copula function is proposed from the quantitative point of view, the refused domain and p-value of this test are put forward. At last, the asymptotic property of the proposed test statistic is given, we also proved that the resulting method is the consistency test and showed that this method can be used to select the optimal Copula function.
作者 陈秀平 杜江
出处 《数理统计与管理》 CSSCI 北大核心 2011年第4期639-643,共5页 Journal of Applied Statistics and Management
基金 浙江省教育厅科研项目(Y200906547) 北京工业大学研究生科技基金资助项目(ykj-2010-3774) 温州大学校级科研项目(2007L020)
关键词 COPULA函数 加权平均距离检验量 相合性 拒绝域 Copula function, weighted average distance test, consistency, refused domain
  • 相关文献

参考文献5

  • 1Ounky Kiln, Mervyn J, Paramsolthy Silvapulle. Comparison of semiparametric and parametric methods for estimating copulas [J]. Computational Statistics & Data Analysis, 2007, 51: 2836-2850.
  • 2Jadran Dobric Friedrich Schmid. A goodness of test for copulas based on Rosenblatt's transibrmation [J]. Computational Statistics & Data Analysis, 2007, 51: 4633-4642.
  • 3Durrleman V Nikeghbali, Roncalli T. Which Copula is the right one? [R]. Working paper, Groupe de Recherche Operationnelle, Credit Lyonnais, 2000.
  • 4于波,陈希镇,杜江.Copula函数的选择:方法与应用[J].数理统计与管理,2008,27(6):1027-1033. 被引量:21
  • 5Nelsen R B. An Introduction to Copula [M]. Berlin: Spring, 2005.

二级参考文献12

  • 1单国莉,陈东峰.一种确定最优Copula的方法及应用[J].山东大学学报(理学版),2005,40(4):66-69. 被引量:25
  • 2Sklar A. Functions de repartition a n dimensions et leurs marges [J]. Publications del'Institut de Statistique del' Universite de Paris. 1959, (8): 229-231.
  • 3Bouye E. Copulas for Finance, a reading guide and some applications [M]. London: City University Busines School, 2000.
  • 4Durrleman V, Nikeghbali A and Roncilli T. Which copula is the right one? JR]. Working paper, 2000.
  • 5Embrechts P, Lindskog F and McNeil A. Modeling dependence with copulas and applications to risk management [A]. Handbook of heavy tailed distributions in finance[C]. Amsterdam: North-Holland Publishing Company, 2003, 329-384.
  • 6Genest C, Rivest L P. Statistical inference procedures for bivariat Archimedean Copulas [J]. Jounal of the American Statistical Association, 1993, 88(4230): 1035-1042.
  • 7Gumbel E J. Bivariate exponential distributions [J]. J. Amer. Statist. Assoc., 1960, 55: 698-707.
  • 8Durrleman V, Nikeghbali A and Roncilli T. Which copula is the right one? [R]. Working paper, 2000.
  • 9Frank M J. On the simultaneous associativity of F(x,y) and x^+y^-F(x,y) [J]. Aequationes Math., 1979, 19: 194-226.
  • 10Clayton D G. A Model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence [J]. Biometrika, 1978, 65: 141-151.

共引文献20

同被引文献5

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部