期刊文献+

基于用户和项目组合的协同过滤推荐算法

An Improved Collaborative Filtering Algorithm Based on Combining User with Item
下载PDF
导出
摘要 协同过滤算法是电子商务系统中一种重要的个性化推荐技术之一。但是随着电子商务规模的扩大,评分矩阵的稀疏性问题严重的影响了协同过滤算法的推荐效果。该文通过分析并研究了传统的协同过滤算法的不足,提出了一种新的基于用户和项目组合的协同过滤算法,在对稀疏矩阵进行填充时,不仅考虑到了项目之间的相关性,还考虑到了用户之间的相关性,然后在此基础上,构造虚拟的评分矩阵,最后再进行综合推荐。实验结果表明,在评分矩阵极其稀疏的情况下,该算法能有效的提高预测精度。 Collaborative Filtering Algorithm is one of the important personalized recommendation technologies, however, as the increasing scale of the ecommerce, the rating matrix is quite sparse. Thus the quality of the approach is seriously deceased. This paper proposes a new improved approach that based on combining user with item by analyzing the deficiency of the traditional algorithm. In this algorithm, we take the information of the users and items into account while predicting the missing data, then build a virtual matrix to recommend the items. The experimental results show that this new approach can efficiently improve the quality of the recommendation.
作者 闫洲 石刘红
出处 《电脑知识与技术》 2011年第6期3969-3971,共3页 Computer Knowledge and Technology
关键词 协同过滤:数据稀疏性:个性化推荐 collaborative filtering data sparsity personalized recommendation
  • 相关文献

参考文献12

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:433
  • 2Goldberg D,Nichols D,Oki B M,et al.Using collaborative filtering to weave an information tapestp/ [J].Communications of the ACM, 1992,35(12):61-70.
  • 3Sawar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C].Proceedings of the 10th Int'l World Wide Web Conference.New York:ACM Press,2001:285-295.
  • 4Breese J,Hechernan D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering [C].Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI" 98).Sar Francisco:ACM Press,1998:43-52.
  • 5孙静宇,余雪丽,李鲜花.面向语义搜索的推荐模型研究[J].广西师范大学学报(自然科学版),2008,26(3):202-205. 被引量:6
  • 6Ma H,King I,Lyu M R.Effective Missing Data Prediction for Collaborative Filtering [C].Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York: ACM Press,2007:39-46.
  • 7Sacwar B,Karypis G,Konstan J,et,al.Analysis of recommendation algorithms for E-commerce [C].ACM Conference on Electronic Commerce,2000,158-167.
  • 8邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:557
  • 9Kai3@s,G Evaluation of Item-based top-n Recommendation Algorithms [C].Proceedings of the Tenth International Conference on information and Knowledge Management(CIKM),2001.
  • 10Deshpande M,Karypis G.Item-based top-n recommendatiou algorhhms[J].ACM Transactions on Intbrmation Systems,2004,22(1):143- 177.

二级参考文献123

  • 1吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献1010

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部