期刊文献+

连续属性空间上的规则学习算法 被引量:6

A Rule Learning Algorithm on Continuous Attributes Space
下载PDF
导出
摘要 文章研究连续属性空间上的规则学习算法.首先简述了研究连续属性空间上的规则学习算法的目的和意义,并将规则学习理论中的一些基本概念推广到连续属性空间.在此基础上,研究了连续属性空间离散化问题,证明了属性空间最小离散化问题是NP困难问题,并将信息熵函数与无穷范数的概念应用到连续属性离散化问题,提出了基于信息熵的属性空间极小化算法.最后,提出了连续属性空间上的规则学习算法,并给出了数值实验结果. The rule learning algorithm on continuous attribute, space is studied in this paper. First, the purpose and the importance of studying rule learning algorithm on continuous attributes space are briefly introduced, and then some basic concepts in the theory of rule learning are extended to the continuous attributesspace. On this basis, the authors study the problem to divide continuous attributes space, and prove that theproblem of min dividing continuous attributes space is a NP hard problem. The concepts of information entropyand infinite normed apply to the problem of dividing continuous attribute space and a new algorithm of dividingcontinuous attribute space based on the function of information entropy are presented. At last, a rule learningalgorithm on continuous attributes space is presented and the data results of the experiments are given.
出处 《软件学报》 EI CSCD 北大核心 1999年第11期1225-1232,共8页 Journal of Software
基金 国家863高科技项目 煤炭科学基金
关键词 规则学习 算法 连续属性空间 信息熵 人工智能 Rule learning algorithm, continuous attribute space, information entropy, infinite normed, NP hard problem
  • 相关文献

参考文献11

二级参考文献21

  • 1洪家荣,计算机学报,1989年,12卷,2期
  • 2洪家荣,Progress in Machine Language,1987年
  • 3洪家荣,1986年
  • 4洪家荣,Int J Comput Inform Sci,1985年,14卷,6期,421页
  • 5洪家荣,1991年
  • 6洪家荣,计算机学报,1991年,14卷,6期
  • 7洪家荣,计算机学报,1989年,12卷,2期
  • 8洪家荣,1986年
  • 9洪家荣,Int J Comput Inf Sci,1985年,14卷,6期,421页
  • 10洪家荣,第三届全国机器学习研讨会论文集,1991年

共引文献50

同被引文献27

  • 1Kathy L. MOSER,Eric J. TOPOL.An ensemble method for gene discovery based on DNA microarray data[J].Science China(Life Sciences),2004,47(5):396-405. 被引量:5
  • 2黄黄麟.粗集理论及其应用--关于数据推理的新方法(修订版)[M].重庆:重庆大学出版社,1998..
  • 3Lander E S. Array of hope. Nature Genetics, 1999,21 (Suppl) :3- 4
  • 4Ramaswamy S, Gloub T R. DNA microarrays in clinical oncology. Journal of Clinical Ontology,2002,20(7) :1932-1941
  • 5Derisi J, Penland L, Brown P O, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genetics, 1996,14(4) :457-460
  • 6Gloub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 1999,286 (5439) : 531-537
  • 7Khan J, Wei J S, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 2001,7(6) : 673-679
  • 8Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2000,46(13) :389-422
  • 9Tibshirani R, Hastie T, Narasimhan B, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression//Proceedings of the National Academy of Science. 2002, 99 (10) : 6567-6572
  • 10Pawlak Z. Rough sets. International Journal of Information and Computer Science, 1982,11 :341-356

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部