期刊文献+

模糊度的结构分析 被引量:4

The structural analysis of fuzzy measures
原文传递
导出
摘要 从商空间的粒度计算理论出发,本文讨论模糊集的模糊度量问题,即模糊度的定义.根据模糊集的结构分析,我们提出"各向同性"的假设,在这个假设下得出以下结果:(1)在有限完备半序集上具有各向同性的模糊度是唯一的.(2)得出模糊数学中的模糊度函数同构的充分必要条件.(3)得出模糊度具有模糊单调性和粒度单调性的充分必要条件.(4)在一定的假设下,给出模糊度的解析表达式.这些结果阐明了模糊度与粒计算的关系,揭示了模糊度的本质,同时提供一种构造模糊度的简易方法. From the quotient space based granular computing theory we explore the fuzzy measures of fuzzy sets. Based on the structural analysis of fuzzy sets,we present an"isotropism"assumption.Under the assumption we have the following results,(1) the uniqueness of the fuzzy measure having isotropic on a finite complete semi-order set;(2) the necessary and sufficient condition of the isomorphism of fuzzy measure functions in fuzzy mathematics;(3) the necessary and sufficient condition that fuzzy measures have fuzzy and granular monotony; (4) under a certain assumption,the analytic expression of fuzzy measures.The results clarify the relation between the fuzzy measure and granular computing,open out the essence of fuzzy measures,and provide a simple way of constructing fuzzy measures.
出处 《中国科学:信息科学》 CSCD 2011年第7期820-832,共13页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:90820305,61073117) 国家基础研究发展计划(批准号:2007CB311003)资助项目
关键词 商空间 模糊集 模糊度 粗糙集 结构分析 quotient space fuzzy set fuzzy measure rough set structural analysis
  • 相关文献

参考文献4

二级参考文献25

  • 1郝娜,王贵君.广义模糊值Choquet积分的双零渐近可加性[J].四川师范大学学报(自然科学版),2007,30(1):62-65. 被引量:2
  • 2张文修 李腾.集值测度的表示定理.数学学报,1998,2:201-208.
  • 3Liang J Y,Chin K S,Dang C Y,Yam R C M.A new method for measuring uncertainty and fuzziness in rough set theory[J].International Journal of General Systems,2002,31(4):331~342.
  • 4Pawlak Z.Rough sets[J].International Journal of Computer and Information Science,1982,11:341~356.
  • 5Pawlak Z.Rough sets:theoretical aspects of reasoning about data[M].Dordrecht:Kluwer,Academic,1991.
  • 6Dubois D,Prade H.Rough fuzzy sets and fuzzy rough sets[J].International Journal of General Systems,1990,17:191~208.
  • 7Morsi N N,Yakout M M.Axiomatics for fuzzy rough sets[J].Fuzzy Sets and Systems,1998,100:327~342.
  • 8Thiele H.On axiomatic characterization of fuzzy approximation operators Ⅰ,the fuzzy rough set based case[A].RSCTC 2000,Banff Park Lodge,Bariff,Canada,Oct.19~19,2000.Conference Proceedings[C].2000:239~247.
  • 9Thiele H.On axiomatic characterization of fuzzy approximation operators Ⅱ,the rough fuzzy set based case[A].Proceedings of the 31st IEEE International Symposium on Multiple-Valued Logic[C].2001:330~335.
  • 10Wu W Z,Mi J S,Zhang W X.Generalized fuzzy rough sets[J].Information Sciences,2003,151:263~282.

共引文献222

同被引文献41

  • 1李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报(自然科学版),2004,43(5):837-841. 被引量:41
  • 2徐峰,张铃,王伦文.基于商空间理论的模糊粒度计算方法[J].模式识别与人工智能,2004,17(4):424-429. 被引量:11
  • 3王守权.大气质量评价与预测的智能方法研究[D].长春:吉林大学,2011.
  • 4付强,王涛,刘德惠.主成分分析在环境空气质量评价中的应用[C]//中国环境科学学术年会论文集.北京:中国环境科学出版社.2011:1183-1185.
  • 5张钹,张铃.问题求解的理论及应用[M].北京:清华大学出版社,2007.
  • 6张钹,张铃.问题求解理论及应用:商空间粒度计算理论及应用[M].第2版.北京:清华大学出版社,2007:45-126.
  • 7Wang Y,Zhu S. Perceptual scale-space and its applications [J]. International Journal of Computer Vision, 2008, 80 (1):143-165.
  • 8Tan T N. Texture edge detection by modeling visual cortical channels[J]. Pattern Recognition, 1995, 28 (9): 1283-1298.
  • 9Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters[J]. Pattern Recognition, 1991, 24 (12) : 1167-1186.
  • 10Bengio Y,Courville A. Deep learning of representations[ M]. Ber- lin:Handbook on Neural Information Processing. Springer Berlin Heidelberg ,2013 : 1-28.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部