期刊文献+

关于加法幂等半环上伴随矩阵的若干性质 被引量:1

Some properties of adjoint matrices over an additively idempotent semiring
原文传递
导出
摘要 分析了加法幂等交换半环上的伴随矩阵,获得了伴随矩阵的若干性质,给出伴随矩阵的积和式的一个不等式.同时讨论了矩阵与其伴随矩阵乘积的幂等性. In this paper, adjoint matrices over a commutative additively idempotent semiring are approached. Some properties of adjoint matrices are given and an ineq - uality for the permanent of adjoint matrix of a matrix is obtained. Also, idempotence of the product of a matrix and its adjoint matrix is discussed.
作者 黄衍 谭宜家
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期313-318,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2008J0194) 福建省教育厅科研资助项目(JA09254) 福建农林大学青年教师科研基金资助项目(2010017)
关键词 加法幂等半环 矩阵 积和式 伴随矩阵 additively idempotent semirings matrix permanent adjoint matrix
  • 相关文献

参考文献8

  • 1Bapat R B. Permanents, max algebra and optimal assignment[J]. Linear Algebra and Its Applications, 1995, 226/228:73 - 86.
  • 2Duan J S. The transitive closure, convergence of powers and adjoint of generalized fuzzy matrices[ J]. Fuzzy Sets and System, 2004, 145:301-311.
  • 3Kim J B, Baartmans A, Sahadin N S. Determinant theory for fuzzy matrices[J]. Fuzzy Sets and System, 1989, 29:349 -356.
  • 4Ragab M Z, Emam E G. The determinant and adjoint of a square fuzzy matrix[J]. Fuzzy Sets and Systems, 1994, 61 : 297 - 307.
  • 5Zhang K L. Determinant theory for D01 -lattices[J]. Fuzzy Sets and Systems, 1994, 62:347 -353.
  • 6Tan Y J. On nilpotency of generalized fuzzy matrices[ J]. Fuzzy Sets and Systems, 2010, 161:2 213 -2 226.
  • 7Golan J S. Semirings and their applications[ M]. Dordrecht: Kluwer Academic Publishers, 1999.
  • 8黄衍,谭宜家.关于坡矩阵的一个问题[J].福州大学学报(自然科学版),2009,37(1):12-18. 被引量:4

二级参考文献11

  • 1Cao Z Q, Kim K H, Roush F W. Incline algebra and applications[M]. New York: John Wiley, 1984.
  • 2Han S C, Li H X. Indices and periods of incline matrices[J]. Linear Algebra and Its Applications, 2004, 387:143 - 165 .
  • 3Han S C, Li H X, Gu Y D. Standard eigenvectors of incline matrices[ J]. Linear Algebra and Its Applications, 2004, 389:235 --246 .
  • 4Han S C, Li H X. The semigroup of incline Hall matrices[J]. Linear Algebra and Its Applications, 2004, 390:183 - 196 .
  • 5Hart S C, Li H X. Invertible incline matrices and Cramer' s rule over inclines[J]. Linear Algebra and its Applications, 2004, 389:121 - 138.
  • 6Han S C, Li H X, Wang J Y. On nilpotent incline matrices[ J]. Linear Algebra and its Applications, 2005, 406:201 - 217.
  • 7Kim K H, Roush F W. Inclines and incline matrices: a survey[J]. Linear Algebra and its Applications, 2004, 379:457 - 473.
  • 8Duan J S. The transitive closure, convergence of powers and adjoint of generalized fuzzy matrices[ J]. Fuzzy Sets Syst, 2004, 145:301 - 311.
  • 9Zhang K L. Determinant theory for D01 -lattice matrlces[J]. Fuzzt Sets Syst, 1994, 62:347 -353.
  • 10Kim J B, Baartmans A, Sahadin N S. Determinant theory for fuzzy matrices[J]. Fuzzy Sets Syst, 1987, 29:349 -357.

共引文献3

同被引文献5

  • 1Kim J B,Baartmans A,Sahadin N S. Determinant theory forfuzzy matrices [ J]. Fuzzy Sets and System, 1989,29: 349 -356.
  • 2Ragab M Z, Emam E G. The determinant and adjoint of asquare fuzzyMatrix [ J]. Fuzzy Sets and Systems, 1994, 61 :297 -307.
  • 3Tan Y J. On nilpotency of generalized fuzzy matrices [J].Fuzzy Sets and Systems,2010,161 : 2213 - 2226.
  • 4Tan Y J. On invertible matrices over antirings [ J]. Linear Al-gebra and its Applications 2007,423:428 -444.
  • 5Duan J S. The transitive closure, convergence of powers andadjoint ofgeneralized fuzzy matrices [J]. Fuzzy Sets Syst,2004,145 : 301 - 311.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部