期刊文献+

随机比例方程的波形松弛方法

Waveform relaxation methods for stochastic pantograph equations
原文传递
导出
摘要 将波形松弛方法应用到随机比例方程.在分裂函数满足单边Lipschitz条件和全局Lipschitz条件下,给出波形松弛方法的误差估计,该误差估计说明此方法是超线性收敛的.完成收敛速度的数值实验,验证了所得理论的正确性. The waveform relaxation is applied to solve stochastic pantograph equations. Under the one - sided Lipschitz conditions and the global Lipschitz conditions imposed on the so - called splitting function, the error estimate of waveform relaxation method is given, which shows that the method is superlinearly convergent. Numerical experiments for the rate of convergence are presented to illustrate the results.
作者 范振成
机构地区 闽江学院数学系
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期345-349,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(10901036) 福建省教育厅科研资助项目(JA09192)
关键词 随机比例方程 波形松弛方法 超线性收敛 分裂函数 stochastic pantograph equations waveform relaxation methods Superlinear convergence splitting functions
  • 相关文献

参考文献10

  • 1Lelarasmee E, Ruehli A, Sangiovanni - Vineentelli A. The waveform relaxation method for time - domain analysis of large scale integrated circuits [ J ]. IEEE Trans CAD, 1982, 1 (3) : 131 - 145.
  • 2Burrage K. Parallel and sequential methods for ordinary differential equations [ M]. Oxford: Oxford University Press, 1995.
  • 3Miekkala U, Nevanlinna O. Iterative solution of systems of linear differential equations [ J ]. Acta Numerica, 1996, 5 ( 1 ) : 259 - 307.
  • 4Mao Xuerong. Stochastic differential equations and their applications[ M]. New York: Horwood Publishing, 1997.
  • 5Gard T C. Introduction to stochastic differential equations[M]. New York: Marcel Dekker, 1988.
  • 6Milstein G N. Numerical integration of stochastic differential equations [ M ]. Dordrecht: Kluwer Academic Publishers, 1995.
  • 7Kloeden P E, Platen E. The numerical solution of stochastic differential equations[ M]. Berlin: Springer, 1992.
  • 8Schurz H, Schneider K R. Waveform relaxation methods for stochastic differential equations [ J ]. Int J Numer Anal Model, 2006, 3 (2) : 232 - 254.
  • 9Fan Zhencheng, Liu Mingzhu, Cao Warning. Existence and uniqueness of the solutions and convergence of semi - implicit Eu- ler methods for stochastic pantograph equations[ J]. J Math Anal Appl, 2007, 325 (2) : 1 142 -1 159.
  • 10Fan Zhencheng, Song Minghui, Liu Mingzhu. The ct- th moment stability for the stochastic pantograph equation[J]. J Com- put Appl Math, 2009, 233(2) : 109 - 120.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部