期刊文献+

多策略蚁群算法求解机器人路径规划 被引量:4

Multi-strategy ant colony algorithm for robot path planning
原文传递
导出
摘要 针对基本蚁群算法的缺点,提出用多策略的蚁群算法求解机器人路径规划问题.采用栅格法建立机器人全局路径规划工作空间模型,进行两次凸化改进处理.提出惩罚策略,并配合使用保健算子策略、治病算子策略,同时引入遗传算子策略、精英蚂蚁策略和最大最小蚂蚁策略.介绍在Matlab环境下编程实现的方法及步骤,求解100个栅格点的路径规划问题,得到最优距离为15.070.仿真结果表明,即使在复杂的地形环境中用本算法也可迅速规划出令人满意的最优路径. A multi -strategy ant colony algorithm is proposed for robot path planning problem to deal with the default of the basic ant colony algorithm. The grid method is established for work space model of global path planning, and the convex optimization is processed twice. The punishment strategy, nourishing operator and remedying operator are introduced along with the genetic operator, max - min ant system and elite ant strategy. The Matlab programming method and steps are described in details. The simulation that applied the robot path planning about 100 points reached an optimum of 15. 070. The results of simulation show that the best path can be found in short time, and the effect is very satisfying even if the geographic conditions with obstacles are exceedingly complicated.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期385-391,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01279) 2010年度国家大学生创新性实验计划资助项目(091038602)
关键词 多策略蚁群算法 路径规划 MATLAB 机器人 multi - strategy ant colony algorithm path planning Matlab robot
  • 相关文献

参考文献21

  • 1梁毓明,徐立鸿.移动机器人路径规划技术的研究现状与发展趋势[J].机电一体化,2009,15(3):35-38. 被引量:15
  • 2蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策,2002,17(4):385-390. 被引量:119
  • 3Metea M, Tsai J. Route planning for intelligent autonomous land vehicles using hierarchical terrain representation [ C ]// Proc IEEE International Conference on Robotics and Automation. [ s. 1. ] : IEEE, 1987:1 947 -1 952.
  • 4蔡佐军,孙德宝,秦元庆,李宁.基于构型空间法的机器人路径规划研究[J].计算机与数字工程,2006,34(4):88-90. 被引量:7
  • 5袁曾任,高明.在动态环境中移动机器人导航和避碰的一种新方法[J].机器人,2000,22(2):81-88. 被引量:58
  • 6Brooks R. Solving the find- path problem by good representation of free space[ J ]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 1983, 13(3): 190-197.
  • 7Choset H, Acra E, Rizzi A A, et al. Exact cellular decompositions in terms of critical points of Morse functions [ C ]//IEEE In- ternational Conference on Robotics and Automation. [ s. 1. ] : IEEE, 2000, 3 : 2 270 - 2 277.
  • 8Khati O. Real -time obstacle for manipulators and mobile robot[ J ]. The International Journal of Robotics Research, 1986, 5 (1) : 90 -98.
  • 9Araujo F, Ribeiro B, Rodrigues L. A neural network for shortest path computation[ J]. IEEE Trans on Neural Networks, 2001, 12(5): 1067-1073.
  • 10Gen M, Cheng Rtmwei, Wang Dingwei. Genetic algorithms for solving shortest path problem[ C ]//Proc 1997 IEEE Interna- tional Conference on Evolutionary Computation (ICEC '97). [s. 1. ] : IEEE, 1997:401 -406.

二级参考文献85

共引文献316

同被引文献36

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部