期刊文献+

动态优化算法综述 被引量:6

Survey on Dynamic Optimization Algorithms
原文传递
导出
摘要 动态优化算法的研究已成为优化算法领域研究的一个热点.对于基于种群的优化算法而言,它主要可以分为环境变化后增加多样性的方法、运行过程中始终保持多样性的方法、基于记忆机制的方法、多种群方法和基于预测机制方法5类.动态优化算法的关键是在搜索过程中始终保持搜索空间开发和探索之间平衡.该类算法不仅能发现最优个体,而且能在动态环境中跟踪变化了的最优个体.在今后的动态优化研究中,重点应放在动态优化算法理论方面和算法设计、构建上,使它更接近现实问题. Research on Algorithms dealing with dynamic optimization problems has been one of the hotspots in the optimization algorithms' area.The population-based optimization algorithms are grouped into five categories: increasing diversity after environment changes,keeping diversity during the run,using memory schemes,multi-population and prediction-based approaches.The keys of these methods are keeping the balance of the exploration and exploitation in research space.The algorithms can not only find the optimum but also track the changing optimum.At last this paper points out the problems in the dynamic optimization area needed to research deeply in the future.Dynamic optimization algorithms need researches on algorithm design,building near-real-world dynamic optimization problem model and algorithm theory for dynamic optimization in the future.
作者 陈莉 丁立新
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2011年第3期255-264,共10页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(60975050) 高等学校博士点基金(20070486081) 湖北省杰出青年基金(2005ABB017)资助项目
关键词 动态优化 多样性 多种群 记忆机制 预测机制 dynamic optimization diversity multi-population memory schemes prediction
  • 相关文献

参考文献2

二级参考文献18

  • 1Yaochu J, Branke J. Evolutionary optimization in uncertain environments -- A survey[J]. IEEE Trans on Evolutionary Computations, 2005, 9(3) : 1-15.
  • 2Grefenstette J J. Genetic algorithms for changing environments [C]. Parallel Problem Solving from Nature. Brussels, 1992: 137-144.
  • 3Oppacher F, Wineberg M. The shifting balance genetic algorithm: Improving the GA in a dynamic environment [C]. Proc of Genetic and Evolutionary Computation.San Francisco : Morgan Kaufmann Publisher, 1999:504-510.
  • 4Branke J, Kaubler T, Schmidt C, et al. A multipopulation approach to dynamic optimization problems [C]. Adaptive Computing in Design and Manufacturing 2000. Berlin: Springer-Verlag, 2000:299-308.
  • 5Ursem R K. Multinational GA optimization technique in dynamic environments [ C]. Proc of Genetic and Evolutionary Computation. San Francisco:Morgan Kaufmann Publisher, 2000:19-26.
  • 6Miihlenbein H. The equation for response to selection and its use for prediction [J ]. Evolutionary Computation, 1998, 5(6): 303-346.
  • 7Yang S X. Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems [C]. The IEEE Congress on Evolutionary Computation. Edinburgh: IEEE Press, 2005: 2560- 2567.
  • 8Ghosh A, Muhlenbein H. Univariate marginal distribution algorithms for non-stationary optimization probLems[J]. Int J of Knowledge-based and Intelligent Engineering Systems, 2004, 8(3) : 129-138.
  • 9Shengxiang Y, Xin Y. Exprrimental study on population-based incremental learning algorithms for dynamic optimization problems[J]. Soft Computation, 2005, 9(6), 815-834.
  • 10Whitley L D. Fundamental principles of deception in genetic search [J]. Foundations of Genetic Algorithms, 1991, 1(3):221-241.

共引文献10

同被引文献16

  • 1张晓菲,张火明.基于连续函数优化的禁忌搜索算法[J].中国计量学院学报,2010,21(3):251-256. 被引量:10
  • 2单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 3Jin Yao-chu, JUrgen Branke. Evolutionary optimization in uncertain environments-a survey [J]. IEEE Transactions on Evolutionary Computation,2005,9 ( 3 ) : 303-317.
  • 4Uday K Chakraborty. Advances in differential evolution [ M ]. Springer, 2008.
  • 5Rainer Store, Kenneth Price, Lampinen J. Differential evolution-a practical approach to global optimization [ M ]. Springer,2005.
  • 6Mathys C du Plessis, Andries P Engelbrecht. Improved differential evolution for dynamic optimization [ C ]. IEEE Congress on Evolu- tionary Computation,2008:229-234.
  • 7Janez Brest. Dynamic optimization using self-adaptive differential evolution [C]. IEEE Congress on Evolutionary Computation, 2009:415-422.
  • 8Morrison R W, De Jong K A. A test problem generator for non-sta- tionary environments [ C ]. IEEE Congress on Evolutionary Com- putation, 1999:2047-2053.
  • 9刘黎黎,王诗元,汪定伟.求解交货期可变动态调度问题的差分进化算法[J].东北大学学报(自然科学版),2011,32(2):183-187. 被引量:1
  • 10周传华,谢安世.一种基于动态小生境的自组织学习算法[J].软件学报,2011,22(8):1738-1748. 被引量:13

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部